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Summary
Background Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal 
tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high 
heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants aff ecting 
vitamin D concentrations and risk of insuffi  ciency.

Methods We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals 
of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), 
fi ve as in-silico replication cohorts (n=9367), and fi ve as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D 
concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. 
Vitamin D insuffi  ciency was defi ned as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of 
genome-wide analyses across cohorts using Z-score-weighted meta-analysis. Genotype scores were constructed for 
confi rmed variants.

Findings Variants at three loci reached genome-wide signifi cance in discovery cohorts for association with 
25-hydroxyvitamin D concentrations, and were confi rmed in replication cohorts: 4p12 (overall p=1·9×10–¹⁰⁹ for 
rs2282679, in GC); 11q12 (p=2·1×10–²⁷ for rs12785878, near DHCR7); and 11p15 (p=3·3×10–²⁰ for rs10741657, near 
CYP2R1). Variants at an additional locus (20q13, CYP24A1) were genome-wide signifi cant in the pooled sample 
(p=6·0×10–¹⁰ for rs6013897). Participants with a genotype score (combining the three confi rmed variants) in the 
highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 
2·47, 95% CI 2·20–2·78, p=2·3×10–⁴⁸) or lower than 50 nmol/L (1·92, 1·70–2·16, p=1·0×10–²⁶) compared with those 
in the lowest quartile.

Interpretation Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport aff ect 
vitamin D status. Genetic variation at these loci identifi es individuals who have substantially raised risk of vitamin D 
insuffi  ciency.

Funding Full funding sources listed at end of paper (see Acknowledgments).

Introduction
Vitamin D insuffi  ciency aff ects as many as half of 
otherwise healthy adults in developed countries.1 The 
musculoskeletal consequences of inadequate vitamin D 
concentrations are well established, and include 
childhood rickets, osteomalacia, and fractures.2 A growing 
number of other disorders have also been linked to 
vitamin D insuffi  ciency, although causal associations 
have not yet been established in randomised trials. These 
extraskeletal disorders include type 1 and type 2 diabetes,2–4 
cardiovascular disease,5,6 increased risk of falls,7 and 
cancers of the breast, colon, and prostate.8–10 Results of a 
2007 meta-analysis suggested that vitamin D supplementation 
substantially reduced mortality.11

Personal, social, and cultural factors are important 
determinants of vitamin D availability via their eff ects on 
sun exposure and diet. Suffi  cient exposure to ultraviolet 
light or adequate intake from diet or supplements is 
needed to maintain vitamin D status. Concentrations of 
the widely accepted biomarker for vitamin D, 
25-hydroxyvitamin D, are highest in the summer and 
lowest in the winter in northern latitudes. However, only 
about a quarter of the interindividual variability in 
25-hydroxyvitamin D concentration is attributable to 
season of measurement, geographical latitude, or 
reported vitamin D intake.12,13 Results of previous twin 
and family studies suggest that genetic factors contribute 
substantially to this variability,13,14 with estimates of 
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heritability as high as 53%. Although several rare 
mendelian disorders cause functional vitamin D 
insuffi  ciency, data for the eff ect of common genetic 
variation on vitamin D status are scarce. Candidate gene 
studies have been done to examine the eff ect of specifi c 
vitamin D pathway genes, but these studies have been 
limited by small sample sizes and the small numbers of 
variants examined.15–18

The SUNLIGHT consortium (Study of Underlying 
Genetic Determinants of Vitamin D and Highly Related 
Traits) was formed in 2008. It represents a collaboration 
of cohorts from the UK, USA, Canada, Netherlands, 
Sweden, and Finland. We aimed to identify common 
genetic variants aff ecting vitamin D concentrations and 
risk of vitamin D insuffi  ciency.

Methods
Participants
We undertook a large, multicentre, genome-wide 
association study of 15 cohorts in Europe, Canada, and 
the USA. The discovery sample consisted of 
16 125 individuals of European descent drawn from fi ve 
epidemiological cohorts: the Framingham Heart Study, 
TwinsUK, the Rotterdam Study, the 1958 British Birth 
Cohort (1958BC), and the Amish Family Osteoporosis 
Study (AFOS). Five additional cohorts (n=9367) with 
genome-wide association data were used for in-silico 
replication: the Cardiovascular Health Study, the North 
Finland Birth Cohort 1966 (NFBC1966), the Indiana 
cohort, the Health, Aging, and Body Composition study 
(Health ABC), and the Gothenburg Osteoporosis and 

Obesity Determinants study (GOOD). We also undertook 
genotyping of selected variants in 5789 participants from 
four additional epidemiological cohorts (Canadian 
Multicentre Osteoporosis Study [CaMos], Chingford, 
Hertfordshire, and the Aberdeen Prospective Osteo-
porosis Screening Study [APOSS]), and 2715 additional 
participants from one of the discovery cohorts (1958BC). 
Full descriptions of all participating cohorts are shown in 
the webappendix (pp 1–7). Written informed consent was 
obtained from all participants in the included cohorts, 
and the study protocols were reviewed and approved by 
local institutional review boards.

Procedures
Details of genotyping methods, quality control, and 
imputation procedures used in all participating cohorts 
are shown in the webappendix (pp 7–14). 25-hydro-
xyvitamin D concentrations were measured by radio-
immunoassay or chemiluminescent assay (DiaSorin Inc, 
Stillwater, MN, USA) in the Framingham Heart Study, 
TwinsUK, Rotterdam Study, Health ABC, AFOS, the 
GOOD cohort, and CaMoS. Detection limits ranged from 
4 nmol/L to 10 nmol/L. In the 1958BC samples, 
25-hydroxyvitamin D was measured with automated 
application of the ImmunoDiagnostic Systems OCTEIA 
ELISA on a Dade-Behring BEP2000 analyser (sensitivity 
of 5·0 nmol/L; Marburg, Germany).19 In the 
Cardiovascular Health Study, NFBC1966, the Indiana 
cohort, Chingford, Hertfordshire, and APOSS, total 
25-hydroxyvitamin D was measured with high-
performance liquid chromatography-tandem mass 

Chromosome Position Nearest gene(s) MAF Combined p value for 
discovery samples 
(up to n=16 124)

Combined p value for 
replication samples 
(up to n=17 744)

Overall p value

rs2282679 4 72827247 GC 0·29 4·57×10–63 2·88×10–48 1·9×10–109

rs3755967 4 72828262 GC 0·29 7·41×10–53 3·00×10–24 2·42×10–75

rs17467825 4 72824381 GC 0·29 3·85×10–52 1·61×10–23 6·75×10–74

rs1155563 4 72862352 GC 0·30 4·70×10–55 4·26×10–20 2·37×10–73

rs2298850 4 72833131 GC 0·28 8·94×10–49 2·12×10–24 2·03×10–71

rs7041 4 72837198 GC 0·44 3·74×10–42 1·78×10–18 6·31×10–59

rs12785878 11 70845097 DHCR7/NADSYN1 0·23 1·27×10–12 2·39×10–16 2·12×10–27

rs7944926 11 70843273 DHCR7/NADSYN1 0·23 1·56×10–13 7·57×10–4 8·96×10–16

rs12800438 11 70848651 DHCR7/NADSYN1 0·23 5·98×10–13 6·39×10–4 2·54×10–15

rs3794060 11 70865327 DHCR7/NADSYN1 0·23 8·09×10–13 6·44×10–4 3·38×10–15

rs4945008 11 70898896 DHCR7/NADSYN1 0·24 8·98×10–13 6·11×10–4 4·55×10–15

rs4944957 11 70845683 DHCR7/NADSYN1 0·23 1·43×10–12 7·36×10–4 8·70×10–15

rs10741657 11 14871454 CYP2R1 0·40 3·91×10–8 2·09×10–14 3·27×10–20

rs2060793 11 14871886 CYP2R1 0·40 2·69×10–6 2·36×10–7 1·73×10–11

rs1993116 11 14866810 CYP2R1 0·40 2·94×10–6 1·28×10–6 6·25×10–11

rs12794714 11 14870151 CYP2R1 0·43 6·24×10–5 8·71×10–7 1·84×10–9

rs10500804 11 14866849 CYP2R1 0·43 7·43×10–5 1·12×10–6 2·67×10–9

rs7116978 11 14838347 CYP2R1 0·36 1·17×10–5 7·59×10–5 4·99×10–9

Results within each locus are ordered by strength of association with 25-hydroxyvitamin D concentration. MAF=minor allele frequency.

Table 1: Single nucleotide polymorphisms identifi ed in genome-wide association analyses for 25-hydroxyvitamin D concentrations
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spectrometry. Serum concentrations of vitamin D binding 
protein were measured with immuno nephelometric 
assay in the TwinsUK cohort.20 The detection limit was 
50 mg/L.

Statistical analyses
At the threshold α=5×10–⁸, with a conservative discovery 
sample size of 14 000, our study had 80% power to detect 
single nucleotide polymorphisms accounting for 0·28% 
of the total variance in 25-hydroxyvitamin D con-
centrations, and 90% power to detect polymorphisms 
accounting for 0·32% of the total variance.

Genome-wide analyses were done within every cohort. 
In the Framingham Heart Study, TwinsUK, the Rotterdam 
Study, 1958BC, AFOS, NFBC1966, the Indiana cohort, 
Health ABC, and the GOOD study, linear regression 
models were used to generate cohort-specifi c residuals of 
naturally log transformed 25-hydroxyvitamin D 
concentrations adjusted for age, sex, body-mass index 
(BMI), and season. Log transformation was used to 
reduce skewness in the distribution of 
25-hydroxyvitamin D. We modelled season using 
categorical variables for summer (July–September), 
autumn (October–December), winter (January–March), 
and spring (April–June). One set of defi nitions was used 
for season because most cohorts were at similar latitudes, 
and all were in the northern hemisphere.

In cohorts that included related individuals 
(Framingham, TwinsUK, AFOS, Indiana Women), we 
assessed association between additively coded single 
nucleotide polymorphism genotypes and standardised 
25-hydroxyvitamin D residuals using either linear mixed-
eff ect models or the score test implemented in MERLIN 
(version 1.1.2).21 For imputed single nucleotide 
polymorphisms, expected number of minor alleles (ie, 
dose) was used in assessments of association between 
genotype and 25-hydroxyvitamin D residuals. In the 
Cardiovascular Health Study, analyses were adjusted for 
age, sex, and study site by inclusion of these factors as 
covariates in the model. In all samples, the genomic 
control approach was used to adjust p values for potential 
eff ects of mild population stratifi cation and to prevent 
infl ation of type I error occurring from any departure 
from normality of the trait variable.

A priori, we designated the fi rst fi ve genome-wide 
association studies, all of which used immunoassays to 
measure 25-hydroxyvitamin D concentrations, as 
discovery samples. The remaining fi ve studies, three of 
which measured 25-hydroxyvitamin D by mass 
spectrometry and two by immunoassay, were designated 
as in-silico replication samples. We selected single 
nucleotide polymorphisms for replication if they had 
meta-analytic p values for association with 
25-hydroxyvitamin D concentrations that were lower 
than 5×10–⁸ in the discovery samples. Additionally, we 
considered polymorphisms at or near six prespecifi ed 
vitamin D pathway candidate genes: vitamin D receptor 

(VDR), 1-α-hydroxylase (CYP27B1), 25-hydroxylase 
(CYP2R1), 24-hydroxylase (CYP24A1), vitamin D binding 
protein (GC), and 27-hydroxylase and 25-hydroxylase 
(CYP27A1). These polymorphisms were tested in the 
replication samples if they met a p value threshold of 10–³ 
in the discovery samples. Lastly, we assessed selected 
polymorphisms for 25-hydroxyvitamin D association in 
the de-novo replication samples, using the same analytic 
approach. We then generated combined p values across 
the 15 studies.22

We undertook the meta-analysis using a weighted 
Z-score-based approach, as implemented in the software 
METAL (version 2009-10-10). In this approach, association 
p values were converted to signed Z statistics, for which 
the sign showed the direction of eff ect with respect to a 
reference allele. All Z scores were assigned a weight 
proportional to the square root of the sample size. 
Weighted Z statistics were summed across studies to 
obtain a global Z score and a corresponding two-sided 
p value. We regarded p values lower than 5×10–⁸ as 
genome-wide signifi cant.23

We also assessed whether selected genetic variants 
from the continuous trait analyses were associated with 
vitamin D insuffi  ciency in the Framingham Heart Study, 
TwinsUK, CaMoS, and 1958BC. We used two thresholds 

Framingham 
Heart Study 
(n=5656)

1958 British 
Birth Cohort 
(n=6552)

GC*

Major homozygotes (nmol/L) 82·6 (0·73) 61·9 (0·34)

Heterozygotes (nmol/L) 74·8 (0·81) 57·0 (0·32)

Minor homozygotes (nmol/L) 64·6 (1·79) 52·8 (0·28)

DHCR7† 

Major homozygotes (nmol/L) 79·7 (0·71) 59·6 (0·32)

Heterozygotes (nmol/L) 76·3 (0·86) 56·3 (0·31)

Minor homozygotes (nmol/L) 71·7 (2·01) 55·7 (0·31)

CYP2R1‡

Major homozygotes (nmol/L) 75·4 (0·87) 56·8 (0·31)

Heterozygotes (nmol/L) 78·6 (0·76) 60·2 (0·34)

Minor homozygotes (nmol/L) 81·6 (1·26) 61·1 (0·36)

Season

Winter (nmol/L) 61·6 (1·00) 43·2 (0·26)

Spring/autumn (nmol/L) 77·4 (0·68) 57·1 (0·30)

Summer (nmol/L) 95·8 (1·00) 71·7 (0·31)

Supplementation

Yes (nmol/L) 83·4 (0·80) 65·9 (0·32)

No (nmol/L) 74·7 (0·69) 56·9 (0·30)

Data are mean (SE). Sample from 1958 British Birth Cohort (1958BC) consists of a 
combination of the genome-wide association study sample and the de novo 
genotyping sample (webappendix p 2). *rs2282679 in Framingham cohort, rs4588 
in 1958BC (r2 between single nucleotide polymorphisms >0·99). †rs7944926 in 
Framingham cohort, rs12785878 in 1958BC (r2 between polymorphisms >0·99). 
‡rs10741657 in Framingham cohort and 1958BC.

Table 2:  Mean 25-hydroxyvitamin D concentrations by genotype, 
season, and supplementation status
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for vitamin D insuffi  ciency: 25-hydroxyvitamin D 
concentrations lower than 75 nmol/L (30 ng/mL) and 
lower than 50 nmol/L (20 ng/mL).1 Covariates were age, 
sex, season, and BMI. We combined eff ect estimates 
from the logistic regression analysis across cohorts by 
meta-analysis using an inverse-variance weighting 
approach. We also did analyses using a 25 nmol/L (10 ng/
mL) threshold, to examine whether genetic variants were 
associated with severe vitamin D defi ciency.

Additionally, we constructed a genotype score by taking 
a weighted average of the number of risk alleles for 
members of a cohort, with weights established using 
β coeffi  cients from the meta-analysis. Logistic regression 
was used to calculate the odds of vitamin D insuffi  ciency 
according to quartile of the genotype score. For this 
analysis, we combined data from the Framingham Heart 
Study, TwinsUK, and 1958BC using a multivariate 
approach, with β coeffi  cients for each quartile of genotype 
score meta-analysed jointly, as previously described.24

Role of the funding source
The sponsors of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 

access to all the data in the study and had fi nal 
responsibility for the decision to submit for publication.

Results
Characteristics of the study cohorts are summarised in 
the webappendix (pp 15–17). Table 1 shows the results of 
genome-wide association analyses. In analysis of data 
from the fi ve discovery samples, single nucleotide 
polymorphisms at three unique loci met the prespecifi ed 
threshold for genome-wide signifi cance: 4p12, 11q12, and 
11p15. The 4p12 polymorphisms were within or near the 
GC gene, and the results included a non-synonymous 
polymorphism in this gene, rs7041. The 11q12 
polymorphisms were near DHCR7/NADSYN1 
(7-dehydrocholesterol reductase/NAD synthetase 1) and 
the 11p15 polymorphisms near CYP2R1 (cytochrome 
P450, subfamily IIR).

Associations at all three loci were confi rmed in 
replication samples. The polymorphism at GC with the 
lowest p value in discovery samples, rs2282679, had a 
combined p value of 2·9×10–⁴⁸ in in-silico replication 
samples, with a consistent direction of eff ect. Additional 
genotyping was not done for this polymorphism. 
Polymorphism rs10741657 at CYP2R1 had a p value of 
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2·1×10–¹⁴ in in-silico and de-novo replication samples, 
also with a consistent direction of eff ect. At the DHCR7/
NADSYN1 locus, a perfect proxy for rs7944926 
(rs12785878, r²=1·0) was genotyped in de-novo replication 
samples, and had a combined replication p value (in-
silico and de-novo samples) of 2·4×10–¹⁶. Overall p values 
(discovery and replication samples) for the three 
confi rmed single nucleotide polymorphisms ranged 
from 3·3×10–²⁰ to 1·9×10–¹⁰⁹ (table 1). Figure 1 shows 
regional plots for the results at each locus. In the 
discovery cohorts, single nucleotide polymorphisms at 
the three confi rmed loci (GC, DHCR7/NADSYN1, and 
CYP2R1) accounted for 1–4% of the variation in 
25-hydroxyvitamin D concentrations.

We compared mean concentrations of 25-hydroxy-
vitamin D by genotype category at the three loci in the 
two largest cohorts (combined n=12 208) with mean 
concentrations by supplementation status and season 
(table 2). Diff erences in mean 25-hydroxyvitamin D 
concentrations between minor and major homozygotes 
for the strongest genetic variants were similar to those 
seen with supplementation in these cohorts, and were 
nearly as large as diff erences recorded for a one season 
change.

In the candidate gene analysis, polymorphism rs6013897 
near CYP24A1 (cytochrome P450, family 24, subfamily A) 
had a p value of 7·2×10–⁴ in the discovery cohorts, and was 
tested for replication. The p value was 8·4×10–⁸ in the 
replication cohorts, resulting in an overall p value 
(discovery and replication) of 6·0×10–¹⁰. Figure 1 shows a 
regional plot for the results at the CYP24A1 locus. An 
additional candidate polymorphism, rs2544037 near VDR, 
had a p value of 6·2×10–⁴ in the discovery cohorts, but was 
not confi rmed in replication samples. No polymorphisms 
were identifi ed near CYP27B1 or CYP27A1 with p values 
less than 10–³ in the discovery cohorts.

We did additional analyses to assess eff ects of the 
three confi rmed variants on risk of clinical vitamin D 
insuffi  ciency (25-hydroxyvitamin D concentrations 
<75 nmol/L or <50 nmol/L). Table 3 shows results for the 
variants individually and in combination. Participants 
with a genotype score (combining the three variants) in 
the top quartile had increased odds of vitamin D 
insuffi  ciency (fi gure 2). Genotype score was also 
associated with risk of severe vitamin D defi ciency 
(25-hydroxyvitamin D concentration <20 nmol/L), with 
an adjusted odds ratio for participants in the top quartile 
of 1·43 (95% CI 1·13–1·79; p=0·002).

In view of the strong association of genetic variants at 
GC with 25-hydroxyvitamin D concentrations, we also 
examined whether these variants were associated with 
serum concentrations of vitamin D binding protein, 
which was measured in 1674 individuals in the TwinsUK 
cohort. The single nucleotide polymorphism rs2282679 
was strongly associated with concentrations of vitamin D 
binding protein (p=4·0×10–⁴²), with the minor allele 
related to reduced protein concentrations.

Discussion
Vitamin D insuffi  ciency has been implicated in many 
musculoskeletal and extraskeletal diseases,1,2 which has 
led to substantial interest in the determinants of 
vitamin D status. Our fi ndings establish a role for 
common genetic variants in regulation of circulating 
25-hydroxyvitamin D concentrations. The presence of 
harmful alleles at the three confi rmed loci more than 
doubled the risk of vitamin D insuffi  ciency. These 
fi ndings improve our understanding of vitamin D 
homoeostasis and could assist identifi cation of a 
subgroup of the white population who are at risk of 
vitamin D insuffi  ciency.

DHCR7/NADSYN1 is a novel locus for association with 
vitamin D status, but one with compelling biological 
plausibility. DHCR7 encodes the enzyme 
7-dehydrocholesterol (7-DHC) reductase, which converts 
7-DHC to cholesterol, thereby removing the substrate 
from the synthetic pathway of vitamin D3, a precursor of 
25-hydroxyvitamin D3. Rare mutations in DHCR7 lead to 
Smith-Lemli-Opitz syndrome, which is characterised by 
reduced activity of 7-DHC reductase, accumulation of 
7-DHC, low cholesterol, and many congenital 
abnormalities.25 Mutations in DHCR7 might also confer 
a competitive advantage to heterozygous carriers, because 
high concentrations of 7-DHC could provide protection 
against rickets and osteomalacia from hypovitaminosis 
D.26 However, few data exist for vitamin D status in 
individuals with Smith-Lemli-Opitz syndrome or carriers 
of mutations.27 The fi nding that common variants at 
DHCR7 are strongly associated with circulating 
25-hydroxyvitamin D concentrations suggests that this 
enzyme could have a larger role in regulation of vitamin D 
status than has previously been recognised.

The gene at the second locus, CYP2R1, encodes a 
hepatic microsomal enzyme. CYP2R1 could be the 
enzyme underlying 25-hydroxylation of vitamin D in the 
liver, but this suggestion is uncertain because many other 

25-hydroxyvitamin D concentration 
<75 nmol/L

25-hydroxyvitamin D concentration 
<50 nmol/L

Odds ratio (95% CI) p value Odds ratio (95% CI) p value

Individual variants

GC (rs2282679) 1·63 (1·53–1·73) 3·5×10–50 1·49 (1·40–1·59) 7·5×10–33

DHCR7 (rs7944926) 1·21 (1·14–1·29) 4·1×10–10 1·21 (1·14–1·29) 4·7×10–09

CYP2R1 (rs10741657) 1·21 (1·14–1·29) 9·4×10–11 1·06 (1·00–1·13) 0·06

Genotype score

Quartile 1 1·0 (Reference) ·· 1·0 (Reference) ··

Quartile 2 1·29 (1·15–1·46) ·· 1·10 (0·97–1·25) ··

Quartile 3 1·56 (1·39–1·75) ·· 1·38 (1·22–1·57) ··

Quartile 4 2·47 (2·20–2·78)* ·· 1·92 (1·70–2·16)* ··

For individual variants, odds ratios are per copy of the risk allele. All logistic regressions were adjusted for age, sex, 
body-mass index, and season. *p values for trends in odds ratios for genotype scores were 2·3×10–48 for 
25-hydroxyvitamin D concentrations lower than 75 nmol/L and 1·0×10–26 for lower than 50 nmol/L.

Table 3: Genetic variants and risk of vitamin D insuffi  ciency

See Online for webappendix
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enzymes with 25-hydroxylase activity in vitro have been 
described.28 Previous clinical studies have been limited to 
a case report of a Nigerian man with a point mutation in 
CYP2R1 who had a history of rickets,28 and a previous 
candidate gene study in 133 individuals with type 1 
diabetes.18 Because aff ected individuals with CYP2R1 
polymorphisms have been diffi  cult to identify, redundancy 
in the enzymes involved in the 25-hydroxylation step has 
been proposed. Thus, our fi nding that common variants 
at the CYP2R1 locus are associated with circulating 
25-hydroxyvitamin D concentrations is the strongest 
evidence so far that CYP2R1 is the enzyme underlying 
the crucial fi rst step in vitamin D metabolism.

The third gene, GC, encodes vitamin D binding 
protein, which is a 52–59 kDA protein synthesised in 
the liver that binds and transports vitamin D and its 
metabolites (including 25-hydroxyvitamin D and 
1,25-dihydroxyvitamin D).29 A few investigators have 
reported associations between non-synonymous single 
nucleotide polymorphisms in this gene15–17,30,31 and 
25-hydroxyvitamin D concentrations. However, their 
studies were small (≤1500 participants) and results were 
not replicated. The most widely studied GC variants are 
the non-synonymous polymorphisms rs7041 (Asp→Glu) 
and rs4588 (Thr→Lys). The previous nomenclature for 
GC haplotypes (GC1S, GC1F, and GC2) was based on 
specifi c combinations of alleles at these non-
synonymous polymorphisms.15 Our data strongly 
confi rm the association of rs7041 with circulating 
25-hydroxyvitamin D. The other variant, rs4588, is not 
in the HapMap dataset and is thus not part of our 
imputed results. However, rs4588 is only 11 bp away 
from rs7041, and direct genotyping of rs4588 in one of 
our samples (TwinsUK) confi rms that it is in linkage 
disequilibrium (r²>0·99) with several associated 
variants from our genome-wide association study.

We also showed that GC variants associated with low 
25-hydroxyvitamin D concentrations were strongly 

related to reduced concentrations of vitamin D binding 
protein. Whether variation in the amount of circulating 
binding protein aff ects metabolism and availability of 
vitamin D is not well established. Concentrations of the 
binding protein have been postulated to aff ect delivery of 
25-hydroxyvitamin D and activated vitamin D 
(1,25-dihydroxyvitamin D) to target organs, as well as 
clearance of vitamin D metabolites from the circulation.15,16 
Alternatively, changes in quantity or function of the 
binding protein could be accompanied by changes in the 
relative proportions of free and bound 25-hydroxyvitamin 
D, with the free proportion being the potential rate-
limiting factor for 1,25-dihydroxyvitamin D production. 
Further studies are needed to assess the eff ects of 
variation in serum concentrations of vitamin D binding 
protein.

In a screen of candidate gene variants, we noted an 
additional association at the locus containing CYP24A1 
that was genome-wide signifi cant in pooled analyses of 
the discovery and replication samples. CYP24A1 encodes 
24-hydroxylase, which initiates degradation of both 
25-hydroxyvitamin D and 1,25-dihydroxyvitamin D. In 
previous candidate gene and linkage studies, investigators 
have not shown an association of variants at this locus 
with 25-hydroxyvitamin D concentrations, but these 
studies were relatively small.30,32

A high genotype score for the three variants identifi ed 
in our genome-wide association study conferred roughly 
a two-fold increase in risk of vitamin D insuffi  ciency 
(25-hydroxyvitamin D concentrations <50 nmol/L or 
<75 nmol/L) compared with a score in the lowest quartile, 
after we accounted for environmental factors. This result 
suggests that variation at a few genetic loci could have a 
clinically important eff ect on risk of vitamin D 
insuffi  ciency. High genotype score was associated with a 
1·4-fold raised risk of severe vitamin D defi ciency 
(<25 nmol/L). Whether the reduced odds ratio for the 
25 nmol/L threshold shows an increased contribution of 
environmental factors to the most severe forms of 
vitamin D defi ciency is unclear, because severe defi ciency 
was rare in our community-based cohorts.

Whether genetic predisposition modifi es response to 
sun exposure or dietary supplementation warrants 
further study, especially in view of the large interindividual 
diff erences that have been reported in response to 
treatment with identical doses of vitamin D.33 
Furthermore, these variants might provide useful genetic 
approaches to investigate the role of vitamin D 
insuffi  ciency in several chronic diseases with which this 
disorder has been epidemiologically linked.

The validity of our fi ndings is lent support by the large 
study sample (more than 30 000 participants combined 
in discovery and validation samples), consistent results 
across several standard assays for 25-hydroxyvitamin D, 
and the strong biological plausibility of genes at the 
principal loci. Several limitations of the study also deserve 
mention, however. The study was not designed to identify 
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uncommon or rare variants. Resequencing at selected 
loci, partly on the basis of our results, could be used to 
identify uncommon variants with potentially large 
eff ects.

We used a multistage design to achieve maximum 
homogeneity of the assays used in the discovery analyses. 
We might have identifi ed more genome-wide signifi cant 
associations had we combined all study cohorts into one 
stage, but we would not have had a large replication 
sample. Other factors that might have contributed to 
reduced statistical power are second-order interactions 
(eg, with age) and the use of a stringent p-value threshold 
in the discovery stage.34 Accordingly, the absence of 
specifi c candidate genes, such as those aff ecting 
vitamin D action or skin pigmentation, from our most 
signifi cant results does not exclude an eff ect of genetic 
variation at these loci on vitamin D concentrations, but 
their contributions might be small compared with those 
of the genes that we identifi ed.

Assays used to measure 25-hydroxyvitamin D 
concentrations varied between cohorts. To keep potential 
variability introduced by cohort-specifi c measurement 
techniques to a minimum, we standardised 
25-hydroxyvitamin D concentrations within cohorts and 
analysed this variable as a continuous trait. Furthermore, 
primary results were meta-analysed with a Z-score-
weighted approach, which is not scale-dependent. 
Specifi c information about dietary intake and sunlight 
exposure was not available from all cohorts. Such factors 
probably contribute to non-genetic variability in 
25-hydroxyvitamin D concentrations, which would 
reduce the eff ect noted in our analyses.

The single nucleotide polymorphisms that we have 
identifi ed might not be causal variants, but rather be in 
linkage disequilibrium with these variants. We did not 
examine downstream markers of vitamin D status, 
because 25-hydroxyvitamin D concentration is regarded 
as the most reliable indicator of vitamin D status. Other 
molecules, such as 1,25-dihydroxyvitamin D or 
parathyroid hormone, have greater intraindividual 
variability than does 25-hydroxyvitamin D and are 
aff ected by several determinants other than vitamin D 
status. Lastly, we studied only white individuals of 
European descent. Whether the genetic variants we 
identifi ed aff ect vitamin D status in other racial or ethnic 
groups is unknown and warrants further study. 
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