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Abstract: Our diet is known to substantially influence the immune response not only by support
of mucosal barriers but also via direct impact on immune cells. Thus, it was of great interest to
compare the immunological effect of two mouse chows with substantial differences regarding micro-,
macronutrient, lipid and vitamin content on the food allergic response in our previously established
mouse model. As the two mouse chows of interest, we used a soy containing feed with lower fatty
acid (FA) amount (soy-containing feed) and compared it to a soy free mouse chow (soy-free feed) in
an established protocol of oral immunizations with Ovalbumin (OVA) under gastric acid suppression.
In the animals receiving soy-containing feed, OVA-specific IgE, IgG1, IgG2a antibody levels were
significantly elevated and food allergy was evidenced by a drop of body temperature after oral
immunizations. In contrast, mice on soy-free diet had significantly higher levels of IL-10 and were
protected from food allergy development. In conclusion, soy-containing feed was auxiliary during
sensitizations, while soy-free feed supported oral tolerance development and food allergy prevention.

Keywords: food allergy; diet; mouse chow; experimental mouse model; oral immunizations;
polyunsaturated fatty acids; vitamin D; soy; linseed oil

1. Introduction

It is well established that composition of the diet plays a paramount role in establishing an
adequate immune response in humans with impact on allergic diseases [1]. To give some examples,
essential fatty acids (FA) such as polyunsaturated FAs are vital for an adequate body function but
have to be incorporated with food, like linseed oil or fish due to the fact that mammals lack the double
bonds introducing enzymes [2,3]. Having the capacity to regulate inflammation, polyunsaturated FA
metabolites derive either from omega-6 (n-6) or omega-3 (n-3) FAs. While n-6 polyunsaturated FAs such
as arachidonic acid, linoleic acid or γ-linoleic acid give rise to pro-inflammatory eicosanoid mediators
such as prostaglandins, leukotrienes and lipoxins, n-3 polyunsaturated FAs such as α-linolenic acid,
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are described to be associated with
immunomodulation [4–7]. To give an example, EPA, a metabolite of α-linolenic acid is a precursor
of 17-Hydroxyeicosapentaenoic acid (series E resolvin precursor) [8] or 17,18-epoxyeicosatetraenoic
acid, which was repeatedly reported to possess anti-inflammatory and anti-allergic properties [9,10].
Recent studies show that especially the ratio of n-3 to n-6 polyunsaturated FAs is of great importance
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with regards to allergy development or allergy prevention. A higher amount of n-3 versus a lower
amount of n-6 polyunsaturated FAs seems to be the ideal ratio to ensure a balanced healthy immune
response [4,11,12]. However, within the “Western” high fat diet the content of n-6 polyunsaturated
FAs is much higher compared to n-3 polyunsaturated FAs. This type of diet was recently revealed to
contribute to allergy and asthma development in a large meta-analysis [13].

Other essential dietary components influencing the immune response are vitamins. Taking
vitamin D as an example, controversial findings regarding impact on allergy development have been
published. Poole and colleagues studied the epigenetic, genetic and cellular modulations of vitamin D
concluding that numerous mechanisms might contribute to the positive impact of Vitamin D on allergy
prevention [14–17]. In contrast, high levels of vitamin D by extensive maternal supplementation
during pregnancy, birth, lactation or due to supplementation in early childhood was reported to
be associated with enhanced allergen sensitizations [18–20]. Thus, there seems to be an U-shaped
association between 25-hydroxyvitamin D (the active component of vitamin D) and IgE levels with
either too low or too high levels of vitamin D being associated with allergy susceptibility [14,21,22].

With increasing knowledge regarding the influence of dietary components such as lipids, vitamins
and other micronutrients on the appearance of inflammatory processes and the potential subsequent
allergic development, control of immune-active dietary components influencing disease outcome is also
essential for experimental models investigating mechanisms of type 2 immune responses [23]. Thus,
food associated immune changes might be a crucial bias impeding comparability and reproducibility
of results generated from experimental models. When aiming at establishing an oral sensitization
protocol mimicking disease in food allergic patients, it is essential to prevent pre-exposure to the food
protein of interest or any potentially cross-reactive proteins, as allergy induction might be impaired
due to prior oral tolerance induction [24]. However, adequate diet control was reported to be not
only essential in the animals involved in the experiments but also in parental generations or while
suckling [24,25]. Besides control of food allergen exposure, there is a long list of dietary factors that
can possibly change allergen-specific immune responses. Thus, in our present study we aimed to
analyse the impact of two regular mouse chows used in animal housing for experimental research with
different nutritional composition to evaluate the influence on the immune response in a previously
established model of food allergy [26].

2. Materials and Methods

2.1. Animals and Diet

32 female Balb/c mice (Core Unit for Biomedical Research, Division for Laboratory Animal
Science and Genetics, Himberg, Austria) were randomly divided in 4 groups of 8 and were kept under
conventional condition (12 h light/dark cycle at 22 ◦C). 2 out of the 4 groups (a and n) were fed with
LasQCdiet®Rod16-A (Soest, Germany), composed of a higher amount of long-chain polyunsaturated
FAs due to the added linseed oil and lack of soybean product (soy-free feed; Table 1). The other 2
groups (A and N) were fed with ssniff fortified V1534-300 (Soest, Germany) consisting of a lower
percentage of long-chain polyunsaturated FAs and soybean products (soy-containing feed; Table 1).
All groups had unlimited access to water and food.
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Table 1. Dietary composition of different mouse chow according to manufacturers.

Soy-Containing Feed (Ssniff Rat/Mouse
Maintenance Fortified V1534-300) Soy-Free Feed (Lasvendi LasQCdiet Rod16-A)

Dietary Ingredients (in Descending Amount) Dietary Ingredients (in Descending Amount)

Wheat
soybean products

barley
minerals
oat hulls
molasses

vitamins & trace elements
L-lysine HCl

DL-methionine

Wheat
corn gluten

oats
corn

barley
linseed oil
molasses

brewer’s yeast
minerals

vitamins/trace elements-mix

Energy per kg Energy per kg

Gross Energy (GE) 16.2 MJ
Metabolizable Energy (ME) 13.5 MJ

Gross Energy (GE) 15.9 MJ
Metabolizable Energy (ME) 13.1 MJ

calc. formula §14 FMVO

Minerals [%] Minerals [%]

Calcium 1.0
Phosphorus 0.7

Sodium 0.24
Magnesium 0.22
Potassium 0.92
Ca/P = 1.43: 1

Calcium 1.0
Phosphorus 0.65

Sodium 0.3
Magnesium 0.25

Amino acids [%] Amino acids [%]

Arginine 1.19
Cysteine 0.35
Histidine 0.49
Isoleucine 0.79
Leucine 1.39

Lysine 1.1
Methionine 0.38

Phenylalanine 0.89
Threonine 0.72

Tryptophan 0.25
Alanine 0.87

Aspartic acid 1.84
Glutamic acid 4.22

Glycine 0.89
Proline 1.31
Serine 1.01
Valine 0.92

Met+Cys 0.73
Phe+Tyr 1.5

Arginine 0.8
Cysteine 0.35
Histidine 0.4

Isoleucine 0.65
Leucine 1.7
Lysine 0.9

Methionine 0.45
Phenylalanine 0.85

Threonine 0.6
Tryptophan 0.2

Tyrosine 0.6

Vitamins per kg Vitamins per kg

Vitamin A 25,000 IU
Vitamin D3 1500 IU
Vitamin E 135 mg

Vitamin K (as MNB) 20 mg
Thiamine (B1) 86 mg
Riboflavin (B2) 32 mg
Pyridoxine (B6) 31 mg

Cobalamin (B12) 150 µg
Biotin 710 µg

Choline 1370 mg
Folate 10 mg

Pantothenate 59 mg
Niacin 153 mg

Vitamin A 25,000 IU
Vitamin D3 1800 IU
Vitamin E 120 mg
Vitamin K 80 mg

Thiamine (B1) 100 mg
Riboflavin (B2) 30 mg
Pyridoxine (B6) 25 mg

Cobalamin (B12) 120 mg
Biotin 400 µg

Choline 1500 mg
Folate 6 mg

Pantothenate 35 mg
Niacin 80 mg
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Table 1. Cont.

Soy-Containing Feed (Ssniff Rat/Mouse
Maintenance Fortified V1534-300) Soy-Free Feed (Lasvendi LasQCdiet Rod16-A)

Trace Elements per kg Trace Elements per kg

Copper 15 mg
Iodine 2.1 mg
Iron 186 mg

Manganese 68 mg
Selenium 0.3 mg

Zinc 91 mg

Copper 15 mg
Iodine 4 mg
Iron 200 mg

Manganese 120 mg
Selenium 0.2 mg

Zinc 75 mg
Cobalt 1.5 mg

Fatty Acids [%] Fatty Acids [%]

C 14:0 0.01
C 16:0 0.45
C 18:0 0.09
C 20:0 0.01
C 16:1 0.01
C 18:1 0.62
C 18:2 1.76
C 18:3 0.23

C 16:0 0.5
C 18:0 0.2
C 20:0 0.01
C 18:1 0.9
C 18:2 1.9
C 18:3 0.75

1 Physiological fuel value (Atwater), corresponds to 3230 kcal/kg. Abbreviations: L = levo; HCl = hydrochloride;
DL = dextrolevo; FMVO = Futtermittelverordnung (animal feed regulations).

Animals were treated according to European Union guidelines of animal care and the
protocol has been approved by the local Ethics committee of the Medical University of Vienna
and by the Austrian Federal Ministry of Science and Research with the approval number
BMWFW-66.009/0182-WF/V/3b/2017.

Our model allergen of interest was Ovalbumin (OVA; Albumin from chicken egg white, Sigma
Aldrich, Vienna, Austria, #A5503). As a control the mice were kept naive. For all treatments OVA was
freshly dissolved in water to gain requested concentrations.

2.2. Immunization with OVA

On the first day of an immunization cycle each mouse of groups a and A received an intravenous
injection of 116 µg proton pump inhibitor (PPI, Omep 40 mg®, Hexal AG, Holzkirchen, Germany)
diluted in 100 µL 0.9% sterile sodium chloride solution. On the second and third day the mice were
treated with another intravenous injection followed by an intramuscular injection one hour later with
the same solution. 15 min after the intramuscular injection each mouse was fed with 0.2 mg OVA in
combination with 2 mg sucralfate (Sucralan®, Gerot-Lannach, Vienna, Austria) in 100 µL of distilled
water. 2 Groups (a and A) were exposed to the OVA immunization, 2 groups (n and N) stayed naive as
negative controls (Table 2). The immunizations took place on the first three days of a two-week cycle.
After 6 rounds of immunization mice were orally challenged and sacrificed.

Table 2. General overview.

Group Sensitization Oral Challenge Number of Mice Mouse Chow

a 200 µg OVA oral + acid suppression 2 mg/mL OVA oral 8 soy-free feed
n naive 2 mg/mL OVA oral 8 soy-free feed
A 200 µg OVA oral + acid suppression 2 mg/mL OVA oral 8 soy-containing feed
N naive 2 mg/mL OVA oral 8 soy-containing feed

Abbreviations: OVA = Ovalbumin.
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2.3. Oral Challenge with OVA

All 32 mice were orally challenged with 2 mg OVA in 100 µL double distilled water per mouse
to provoke a systemic allergic reaction before sacrifice. Temperature was measured before as well
as 10 min, 30 min and 1 h after oral gavage. The temperature was measured either with a rectal
thermometer (Thermalert TH-5, Physitemp, Clifton, NJ, USA) or with a wireless temperature reader
(DAS-7007S, PLEXX, Elst, Netherlands).

2.4. Measurement of OVA-Specific Antibody Levels

Blood was collected by heart puncture on sacrifice day to perform an enzyme-linked
immunosorbent assay (ELISA) for evaluation of OVA-specific IgE, IgG1 and IgG2a levels. Purified
mouse IgE Isotype control (0.1 µg/mL, BD Biosciences, Franklin Lakes, NJ, USA) and purified mouse
IgG1 and IgG2a (0.4 µg/mL, SouthernBiotech, Birmingham, AL, USA) in 0.1 M sodium carbonate
buffer, pH 9.6 (coating buffer) were used to prepare serial dilutions as standard curves. 96-well plates
(Thermo Fisher Scientific, Waltham, MA, USA) were coated with 10 µg/mL OVA antigen in coating
buffer and stored overnight at 4 ◦C. Plates were blocked with 1% dry milk powder (DMP) dissolved in
tris-buffered saline containing 0.05% Tween (TBS-T) for 2 h at room temperature (RT). After blocking,
samples were diluted in 0.1% DMP/TBS-T (1:20 dilution for IgE, 1:200 dilution for IgG1 and IgG2a)
and left for soaking overnight at 4 ◦C. On the third day purified Rat Anti-Mouse IgE, IgG1 and IgG2a
(1:500 dilution for all antibodies, BD Pharmingen, Heidelberg, Germany) in 0.1% DMP/TBS-T were
added and left for 2 h at RT for detection of the OVA bound antibodies. ECLTM anti-rat IgE horseradish
peroxidase linked with whole antibody from goat (1:1000, GE Healthcare, Little Chalfont, UK) followed
as an enzyme substrate.

For detection of total and OVA-specific IgA intestinal levels, intestines were harvested after
sacrifice and rinsed with 2 mL of extraction buffer (complete Mini, Roche, Basel, Switzerland). The
intestinal content was extracted (4 h at 4 ◦C), centrifuged (5 min at 10 621g-force) and supernatants
were collected and stored at −20 ◦C until further use. For total IgA detection, plates were coated
with rat anti-mouse IgA (2 µg/mL, 100 µL/well, BD Biosciences) diluted in TBS overnight at 4 ◦C.
TBS-T with 1% bovine serum albumin (BSA) was used for blocking (2 h at RT). Samples were diluted
(1:1000 in 0.1% BSA/TBS-T) and the standard curve was prepared with purified mouse IgA isotype
control (1.6 µg/mL in 0.1% BSA/TBS-T, BD Biosciences). Samples and standards were added to the
wells and incubated for 30 min at RT. As detection antibody, biotin anti-mouse IgA (2 µg/mL in 0.1%
BSA/TBS-T, 2 h at RT, BD Biosciences) was used and streptavidin horseradish peroxidase (1:5000 in
0.1% BSA/TBS-T, 1 h at RT, Vector Laboratories, Burlingame, CA, USA) as an enzyme substrate. For
detection of OVA-specific IgA antibodies, plates were coated with OVA in coating buffer (10 µg/mL)
as well as purified mouse IgA isotype control (BD Biosciences) for the standard curve (serial dilution
from 0.1 µg/mL) overnight at 4 ◦C. After blocking (2 h at RT), undiluted samples (100 µL/well) were
added to incubate overnight at 4 ◦C. Biotin anti-mouse IgA (1:250 in 0.1% BSA/TBS-T, BD Biosciences)
was used as a detection antibody (2 h, RT) and streptavidin horseradish peroxidase (1:5000 in 1%
BSA/TBS-T, 1 h at RT, Vector Laboratories) as an enzyme substrate afterwards.

For all ELISAs, the plates were washed manually at least 3 times with TBS-T between incubation
steps. Tetramethylbenzidine (BD OptEIA TMB Substrate Reagent Set; BD Bioscience) was used as
substrate and reaction was stopped with 1.8 mol/L H2SO4 15 min at the latest. Read-out was made in
the range of 450–630 nm using Infinite M200 Microplate reader (Tecan, Männedorf, Switzerland).

2.5. Splenocyte Stimulation and Cytokine Read-Out

During sacrifice, spleen was removed and further processed under sterile conditions. Pre-lysis
medium (RPMI medium 1640 with 1% Penicillin-Streptomycin (PenStrep) and 1% Glutamine (gibco,
Thermo Fisher Scientific)) was added, centrifuged and the supernatant was removed. In total 5 mL
of lysis buffer (ACK Lysing Buffer, Lonza, Gampel, Switzerland) was added and lysis was stopped
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with 5 mL complete medium (RPMI medium 1640 with 1% PenStrep, 1% L-glutamine and 10%
foetal bovine serum (FBS)) after 5 min. Splenocytes were washed 2 times with 5 mL of complete
medium, filtered and kept on ice until further use. After cell counting and adjusting splenocyte
concentrations to 4 × 106 cells/mL, cells were incubated with 3 stimulants: medium as a negative
control, Concanavalin A (ConA) as a positive control and OVA (all 5 µg/mL). After a 72 h incubation
period, stimulated splenocytes were centrifuged, supernatants collected and stored at −20 ◦C for later
detection of cytokines.

For cytokine detection ready-to-use ELISA kits were utilized. Mouse IL-4 ELISA Ready-Set-Go!
by eBioscience was deployed for detecting Interleukin 4 (IL-4) level and Mouse IL-10 Uncoated ELISA
Kit by Invitrogen by Thermo Fisher Scientific for Interleukin 10 (IL-10) level. Instructions included
were followed to achieve results.

2.6. Statistic and Data Analysis

All data was statistically analysed with GraphPad Prism version 7.00 for Windows (GraphPad
Software, La Jolla, California, USA) [27]. The samples were tested for Gaussian distribution by
Kolmogorov-Smirnov normality test. Groups among themselves were compared with Kruskal-Wallis
non-parametric test and Dunn’s multiple comparison test as a post-hoc test.

3. Results

3.1. Mouse Feed Influences Systemic and Local Intestinal Antibody Production

Out of the 32 mice, two groups (each n = 8 mice) (a and n) were fed with soy-free feed whereas
the two groups of A and N were fed with soy-containing feed. Groups a and A were immunized with
OVA under gastric acid suppression for 6 times while groups n and N remained naive. Only in group
A receiving soy-containing feed, IgE serum levels were significantly elevated in comparison to both
naive groups (n and N; Figure 1). Comparable findings were observed when measuring IgG1 serum
level. Group A showed significantly higher level than groups n and N (Figure 2a). For IgG2a serum
levels, a significant difference was observed additionally between group A and a (Figure 2b).
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Figure 1. IgE levels in serum after immunization. Group a and n were fed with soy-free feed and group
A and N with soy-containing feed. Groups A and a were immunized with 200 µg Ovalbumin (OVA)
under gastric acid suppression. Mice of groups N and n were kept naive. Only in group A significantly
higher IgE levels were measured than in the naive groups (n and N) (** p < 0.01).
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3.2. Cytokine Production Reveal a Tolerogenic Milieu Based in Mouse Feed 
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groups showed no significant difference regarding the IL-4 concentration (Figure 4a). However, 
concentrations of IL-10 (Figure 4b) was significantly higher in group a, compared to all other groups.  

Figure 2. IgG1 and IgG2a serum levels after immunization. (a) IgG1 levels of group A were significantly
increased in comparison to groups n and N; (b) IgG2a level of group A were significantly elevated
compared to all other groups (* p < 0.05, *** p < 0.001).

To analyse the local immune response, we measured the total (Figure 3a) and OVA-specific
(Figure 3b) IgA levels in intestinal lavages collected from the intestine directly after final experiments.
Total IgA intestinal level (Figure 3a) were comparable between the four groups. OVA-specific IgA
(Figure 3b) however, was significantly elevated in group a, compared to the naive mice of groups n
and N.
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Figure 3. Total and OVA-specific IgA levels in intestinal lavages. After sacrifice, intestinal content was
collected and screened for total and OVA-specific IgA levels. (a) No differences were revealed for the
groups regarding total IgA levels; (b) Significantly higher OVA-specific IgA was detected in sera of
group a, compared to the naive animals (groups n and N) (* p < 0.05).

3.2. Cytokine Production Reveal a Tolerogenic Milieu Based in Mouse Feed

Next, we evaluated the production of IL-4 and IL-10 in OVA stimulated spleen cells. All four
groups showed no significant difference regarding the IL-4 concentration (Figure 4a). However,
concentrations of IL-10 (Figure 4b) was significantly higher in group a, compared to all other groups.
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Figure 4. IL-4 and IL-10 levels in spleen cell supernatants after stimulation with OVA. (a) No differences
regarding IL-4 levels were found between the groups. (b) IL-10 was significantly increased in group a,
in comparison to the naive groups n and N (** p < 0.01).

3.3. Temperature Changes after Oral OVA Challenge Indicate Food Allergy Development

Before sacrifice, mice were orally challenged with 2 mg OVA and their core body temperature was
measured. Mice of groups a and n revealed no changes in body temperature. In group A, a significant
drop of temperature was measured 10 min (Figure 5a) and 30 min (Figure 5b) after oral challenge
indicating food allergy. In the naive group N receiving soy-containing feed, a marginal decrease of
body temperature was observed 10 min and 30 min after oral challenge (Figure 5a, b).
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min, 30 min and 1 h after oral challenge. The drop of body temperature was calculated. (a) Group A 
showed a significant drop of temperature compared to groups a and n 10 min after oral challenge, 
while core body temperature of group N was also significantly lower compared to group n. (b) The 
same findings were observed 30 min after oral challenge. (** p < 0.01, **** p < 0.0001). 

4. Discussion 

In our current study, we could detect a clear elevation of IgE, IgG1 and IgG2a level in serum of 
the immunized group fed with soy proteins and low FA amounts (soy-containing feed; group A) in 
comparison to the naive groups associated with a drop of core body temperature as a sign of 
anaphylaxis after oral challenge, indicating a clinically manifest IgE-mediated food allergy. Group a 
receiving the linseed oil based diet (soy-free feed) showed high levels of IL-10, which is known to be 

Figure 5. Temperature changes after oral OVA challenges. Temperature was measured before and
10 min, 30 min and 1 h after oral challenge. The drop of body temperature was calculated. (a) Group
A showed a significant drop of temperature compared to groups a and n 10 min after oral challenge,
while core body temperature of group N was also significantly lower compared to group n. (b) The
same findings were observed 30 min after oral challenge. (** p < 0.01, **** p < 0.0001).

4. Discussion

In our current study, we could detect a clear elevation of IgE, IgG1 and IgG2a level in serum
of the immunized group fed with soy proteins and low FA amounts (soy-containing feed; group
A) in comparison to the naive groups associated with a drop of core body temperature as a sign of
anaphylaxis after oral challenge, indicating a clinically manifest IgE-mediated food allergy. Group a
receiving the linseed oil based diet (soy-free feed) showed high levels of IL-10, which is known to be
associated with regulatory T cell induction [28]. Furthermore, no elevated allergen specific IgE was
observed, indicating a protection from food allergy development. In groups a and n, elevated levels
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of core body temperature have to be seen in context of enhanced activity of mice showing no clinical
reaction upon oral allergen challenge.

Composition of food substantially influences immune response and might contribute to
development of food allergies. Due to westernization of the diet associated with elevated amounts of
saturated and n-6 polyunsaturated FAs, lower levels of n-3 polyunsaturated FAs and an overuse of
salt and refined sugar, negative effects on the immune system are observed [29]. With focus on the
innate immune response, three major active components could be defined: low antioxidant intake,
high fat intake and a chronic metabolic surplus associated with obesity and chronic inflammation [30].
Representing a risk factor for airway inflammation, high fat intake was discussed to enhance
development of asthma via interference with the immune system [31,32]. A recent systematic review
even concluded that fast food is associated with asthma and wheeze and other allergic diseases in a
dose-response correlation [13].

Thus, for the prevention of food allergy development a healthy diet is of paramount importance
and even influences the immune response before birth as the maternal diet provides the basis for
developing the innate immune response in infants [33,34].

Without any doubt there are several dietary components of major importance with regards to
immunity. Trace elements from dietary sources like iron are a direct target in the body’s defence against
infection, as they are essential nutrients for pathogens. Recent studies concluded that also manganese
and zinc are vital for bacterial survival [35]. By sequestration of zinc and manganese, bacteria are
starved and dietary manganese levels were suggested to substantially influence intestinal microbiota
composition with direct impact on the immune response [23,36]. Of interest, in our study manganese
levels in the allergy protective soy-free feed were nearly double the amount as in the soy-containing
feed. With regards to the influence of microbial composition on food allergy, our group has previously
reported that protection from food allergy development is associated with the presence of distinct
bacterial strains in faecal samples [37].

Another major difference of the two mouse chows was FA levels. A higher amount of n-6
polyunsaturated FAs than n-3 polyunsaturated FAs was proven to support allergy development in
Balb/c mice [12] and is, thus, in line with our findings regarding the allergy development in group A.
A higher ratio of n-6 to n-3 polyunsaturated FAs in human pregnancy was associated with an increased
risk of allergic rhinitis in infants by the age of five years [38]. Increasing n-3 polyunsaturated FAs cannot
eliminate or decrease the negative impact of westernized diet [39], although the anti-inflammatory
metabolites of n-3 polyunsaturated FAs DHA and EPA can oppose the actions of n-6 polyunsaturated
FAs especially concerning eicosanoid synthesis [4,40]. The ratio of n-6 to n-3 polyunsaturated FAs
therefore plays an important role in balancing the immune response. As a healthy ratio, 4:1 n-6 to n-3
polyunsaturated FAs is suggested, while in western diet a ratio of 15–17:1 is detected [4,11,12]. The
ratio of n-6 polyunsaturated FAs to n-3 polyunsaturated FAs in soy-containing feed was 8:1, while it is
3:1 in soy-free feed.

Another difference in chow composition concerns vitamin D levels. In our study higher vitamin
D levels were positively associated with protection from food allergy development. An U-shaped
association between 25-hydroxyvitamin D and IgE level has been suggested [14,21,22]. Vitamin
D has an essential impact on the immune system and allergy development via many mechanistic
pathways [41]. Despite the fact that differences regarding vitamin D levels in the two mouse chows
were small, it is known that also limited changes of dietary vitamin D levels impact on serum levels
in rodents [42]. Moreover, in both chows vitamin D content is above national research council
recommendations for rodents requirement [43]. Thus, due to the complex nutrient composition of both
chows with high calcium levels an additional impact of vitamin D on the immune response cannot be
excluded in this study. The observed elevated IL-10 levels could be ascribed to chow differences, as
both vitamin D and n-3 polyunsaturated FAs are proven to have a positive impact on regulatory T cell
induction [44,45].
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Another main difference in mouse feed composition was the presence of soy proteins in the
chow supporting allergy development. This is in contrast to findings from Chang and colleagues
reporting that elimination of soy from the rodents feed resulted in sensitization to peanut [46].
Phytoestrogens or more specific isoflavones like daidzein and genistein in soy are well known to
possess anti-inflammatory, antioxidative and chemo-preventive properties [47]. Consumed through
the diet, they can suppress allergic sensitization in humans and supplementation could prevent a
food allergy development [48]. However, in our study we observed the opposing effect as only mice
receiving soy-containing feed were successfully sensitized to OVA. This might be due to mast cell
activating function of oestrogens [49] which should be addressed in future research.

One limitation in the current study is the fact that we did not measure plasma levels of the
different immune modulating nutrients. However, due to the complexity of interactions, we expect
that the observed impact on the immune response is due to an interplay of different components
present in the mouse chow.

5. Conclusions

We found a significant correlation of different mouse chow composition pattern with allergy
development in our experimental food allergy model. As has been underlined recently [50], diet
composition and dietary control is of high relevance for rodent models and ignorance of dietary impact
in experimental models might result in false conclusions. Moreover, our study supports the concept of
allergy prevention via dietary components, which warrants extensive further research.
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