## Vitamin D Deficiency and Rickets

Jeremy Allgrove
Consultant Paediatric Endocrinologist,
Royal London Children's Hospital
Barts Health NHS Trust

#### Rickets – what is it?

- Condition principally affecting the growth plate
- Disruption of the growth plate with:
  - distortion of the normal chondrocyte development
  - failure of normal apoptosis of chondrocytes
  - widening of growth plate
  - failure of vascularisation of cartilage
- Can't occur in adults
- Doesn't affect intramembranous bone (e.g. skull vault)

#### Osteomalacia – what is it?

- Failure of normal mineralisation of the osteoid surfaces during remodelling of bone
- Matrix unaffected
- Dependent upon supply of calcium and phosphate as mineral substrate
- Not clear the effect on bone strength

#### Osteoporosis – what is it?

- Primary defect in matrix formation resulting in secondary reduction in mineral deposition
- Leads to weakened bones and increased fracture tendency
- May be
  - primary e.g. OI or
  - secondary e.g. chronic steroid use



**Proliferative** 

Prehypertrophic

Hypertrophic

Apoptotic

Calcified



| Condition                          | Biochemistry                                                                                           | Gene                                  |
|------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                    |                                                                                                        |                                       |
| 'Nutritional' Vitamin D deficiency | $\downarrow$ Ca, $\downarrow$ PO <sub>4</sub> , ↑PTH,<br>N 25OHD, $\downarrow$ 1,25(OH) <sub>2</sub> D |                                       |
| Nutritional Calcium deficiency     | $\downarrow$ Ca, $\downarrow$ PO <sub>4</sub> , ↑PTH,<br>N 25OHD, ↑ 1,25(OH) <sub>2</sub> D            |                                       |
| Vitamin D dependent rickets        | ↓Ca, ↓PO <sub>4</sub> , ↑PTH, N25OHD,<br>↓ 1,25(OH) <sub>2</sub> D                                     | 1α-hydroxylase deficiency             |
| Vitamin D receptor defect (VDRRII) | ↓Ca, ↓PO <sub>4</sub> , ↑PTH, ↑25OHD,<br>↑1,25(OH) <sub>2</sub> D                                      | VDR defect +/- alopecia               |
| Hypophosphataemic rickets          | NCa, ↓PO <sub>4</sub> , NPTH,<br>N25OHD, ↓1,25(OH) <sub>2</sub> D                                      | PHEX, FGF23, DMP1,<br>ENPP1, Gsα, TOI |
| HHRH                               | NCa, ↓PO <sub>4</sub> , NPTH,<br>N25OHD, ↑1,25(OH) <sub>2</sub> D                                      | Na/Pi co-transporter                  |

| Condition                          | Biochemistry                                                                                           | Gene                                  |
|------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                    |                                                                                                        |                                       |
| 'Nutritional' Vitamin D deficiency | $\downarrow$ Ca, $\downarrow$ PO <sub>4</sub> , ↑PTH,<br>N 25OHD, $\downarrow$ 1,25(OH) <sub>2</sub> D |                                       |
| Nutritional Calcium deficiency     | ↓Ca, ↓ <b>PO</b> <sub>4</sub> , ↑PTH,<br>N 25OHD, ↑ 1,25(OH) <sub>2</sub> D                            |                                       |
| Vitamin D dependent rickets        | ↓Ca, ↓PO <sub>4</sub> , ↑PTH, N25OHD,<br>↓ 1,25(OH) <sub>2</sub> D                                     | 1α-hydroxylase deficiency             |
| Vitamin D receptor defect (VDRRII) | ↓Ca, ↓PO <sub>4</sub> , ↑PTH, ↑25OHD,<br>↑1,25(OH) <sub>2</sub> D                                      | VDR defect +/- alopecia               |
| Hypophosphataemic rickets          | NCa, \po_4, NPTH, N25OHD, \partial 1,25(OH)2D                                                          | PHEX, FGF23, DMP1,<br>ENPP1, Gsα, TOI |
| HHRH                               | NCa, <b>PO</b> <sub>4</sub> , NPTH, N25OHD, \$\frac{1}{2}5(OH)_2D\$                                    | Na/Pi co-transporter                  |

#### Classification of Rickets

| Traditional                             | Revised            |
|-----------------------------------------|--------------------|
|                                         |                    |
| Calciopaenic (inc<br>Vitamin D related) | †PTH mediated      |
| Phosphopaenic                           | ↑FGF23 mediated    |
| Renal                                   | Renal phosphaturia |



## Classification of Calciopaenic, PTH dependent rickets

- Vitamin D deficiency
  - true deficiency (poor sunlight exposure)
  - malabsorption etc
- 25-hydroxylase deficiency
- 1α-hydroxylase deficiency (VDDR1)
- HVD receptor defect (VDDR2)
  - with alopecia (receptor defect)
  - without alopecia (nuclear defect)
  - unknown cause
- Calcium deficiency

## Definition of Deficiency (250HD)

- Toxic
- Fully replete
- Replete
- Insufficient
- Deficient
- Seriously deficient

>200 nmol/L

75-200 nmol/L

51-75 nmol/L

26-50 nmol/L

15-25 nmol/L

<15 nmol/L

#### Clinical Syndromes

- Congenital rickets
- Dilated cardiomyopathy
- Classical rickets (+/- convulsions)
- Hypocalcaemic convulsions
- Generalised aches and pains, muscle weakness etc

#### Conclusions

- Vitamin D receptor mutations result in:
  - severe rickets with poor development
  - Poor growth
- Treatment with intravenous calcium (and magnesium and phosphate) corrects the biochemical abnormalities and heals the rickets
- Oral treatment may be sufficient thereafter if adequate supplements are given

#### Allgrove's Adage 1

# THE TREATMENT OF VITAMIN D DEFICIENCY IS VITAMIN D

#### Allgrove's Adage 2

YOU CAN'T MAKE A DIAGNOSIS
RELATED TO RICKETS OR
HYPOCALCAEMIA UNTIL VITAMIN D
DEFICIENCY HAS BEEN EXCLUDED
OR CORRECTED

#### Allgrove's Adage 3

VITAMIN D SUPPLEMENTATION IS THE MOST COST-EFFECTIVE MEASURE THAT WOULD IMPROVE THE HEALTH OF THE POPULATION OF THE EAST END OF LONDON

### Thank you