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What is already known on this topic?

►► Compared with older adults, severe or fatal 
COVID-19 disease is much less common in 
infants, children and young adults.

►► This pattern is strikingly different to that for 
infection with most other respiratory viruses, 
for which both the prevalence and severity are 
higher in children.

What this study adds?

►► A number of factors have been proposed to 
explain the difference between children and 
adults in the severity of COVID-19, which can be 
categorised into those that put adults at higher 
risk and those that protect children.

►► Although, there are several hypotheses for 
the age-related difference in the severity of 
COVID-19, the observed age-gradient seems to 
most closely parallel changes in immune and 
endothelial/clotting function.

Abstract
In contrast to other respiratory viruses, children have less 
severe symptoms when infected with the novel severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
In this review, we discuss proposed hypotheses for the 
age-related difference in severity of coronavirus disease 
2019 (COVID-19).
Factors proposed to explain the difference in severity of 
COVID-19 in children and adults include those that put 
adults at higher risk and those that protect children. The 
former include: (1) age-related increase in endothelial 
damage and changes in clotting function; (2) higher 
density, increased affinity and different distribution 
of angiotensin converting enzyme 2 receptors and 
transmembrane serine protease 2; (3) pre-existing 
coronavirus antibodies (including antibody-dependent 
enhancement) and T cells; (4) immunosenescence 
and inflammaging, including the effects of chronic 
cytomegalovirus infection; (5) a higher prevalence of 
comorbidities associated with severe COVID-19 and 
(6) lower levels of vitamin D. Factors that might protect 
children include: (1) differences in innate and adaptive 
immunity; (2) more frequent recurrent and concurrent 
infections; (3) pre-existing immunity to coronaviruses; (4) 
differences in microbiota; (5) higher levels of melatonin; 
(6) protective off-target effects of live vaccines and (7) 
lower intensity of exposure to SARS-CoV-2.

Introduction
The novel SARS-CoV-2, which causes the disease 
called COVID-19, has rapidly spread across the 
globe. A striking and consistent observation has 
been the difference in severity of COVID-19 at 
different ages: severity, the need for hospitalisa-
tion and mortality rise steeply with older age while 
severe disease and death are relatively rare in chil-
dren and young adults.1–3 Most children infected 
with SARS-CoV-2 are asymptomatic or have mild 
symptoms, most commonly fever, cough, pharyn-
gitis, gastrointestinal symptoms and changes in 
sense of smell or taste.4 5

Whether children are also less often infected by 
SARS-CoV-2 is an ongoing debate. Large epidemio-
logical studies suggest that children comprise only 1 
to 2% of all SARS-CoV-2 cases.6–8 However, these 
numbers heavily depend on testing criteria and, 
in many reports, testing was done only in individ-
uals who were symptomatic or required hospital-
isation, which is less often the case for children. 
Some studies suggest that children are just as likely 
as adults to become infected with SARS-CoV-2.9 

However, more recent studies report that chil-
dren are less likely to get infected after contact 
with a SARS-CoV-2-positive individual.10–14 It has 
been suggested that children and adolescents have 
similar viral loads15 16 and may therefore be as likely 
to transmit SARS-CoV-2 as adults.17 18 In addition, 
the viral load may be similar in asymptomatic and 
symptomatic individuals.19–21 However, reassur-
ingly, transmission in schools from children either 
to other children or to adults has been rare.22–24

The observation that children are less often 
infected with SARS-CoV-2 and that they have less 
severe symptoms is similar to that reported for 
SARS-CoV-1 and Middle East respiratory syndrome 
(MERS)-CoV.25–27 However, this pattern is strik-
ingly different to that for infection with most other 
respiratory viruses (eg, respiratory syncytial virus 
(RSV), metapneumovirus, parainfluenza or influ-
enza viruses), for which the prevalence and severity 
are both higher in children.28

It remains uncertain whether the age-related 
difference in clinical features of COVID-19 is due 
to risk factors for severe COVID-19 that increase 
with age or due to factors that protect younger 
age groups. Here, we critically review proposed 
hypotheses for the age-related difference in severity 
of COVID-19 (table 1).
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Table 1  Proposed hypotheses for the age-related difference in severity of COVID-19

Hypothesis
Key factors

Proposed mechanism In support of hypothesis Against hypothesis

(A) FACTORS INCREASING RISK IN ADULTS

(1) Endothelium and clotting function

Endothelial damage and 
hypercoagulable state

►► Increased endothelial 
damage with age

►► Susceptibility to excessive 
coagulation increases with 
age

►► Importance of endotheliitis and microthrombi in 
pathogenesis of COVID-1929 30

►► Association between conditions that affect the 
endothelium, such as diabetes and hypertension, and 
severe COVID-1935–37

►► Age-related changes in coagulation consistent with 
age gradient of severe COVID-1938

►► Thrombotic complications, such as heart attacks and 
strokes, in COVID-1929 31–34

►► Vasculitic skin manifestations in COVID-1939–44 53 223

(2) ACE2 receptors and TMPRSS2

Viral entry ►► Age-related differences 
in expression, affinity and 
distribution facilitate SARS-
CoV-2 entry into cells

►► Expression and affinity of ACE2 increase with 
age55 57–59

►► Variants in the ACE2 gene are linked to severity of 
COVID-1968

►► Pneumonia caused by CoV NL63 (that also binds 
to ACE2) is more common in adults compared with 
young children224

►► TMPRSS2 expression on nasal and lung epithelial 
cells likely increases with age58 59 71

►► ACE2 has anti-inflammatory properties 
that protect against ARDS, as well as 
SARS-CoV- and influenza-associated 
lung injury in animal studies64 65

►► Less ACE2 leads to higher levels of 
angiotensin II which is positively 
correlated with viral load and organ 
injury in SARS-CoV-2-infected 
patients67

(3) Pre-existing immunity

Cumulative exposure to 
commonly circulating HCoVs 
(229E, HKU1, NL63, OC43)

►► Non-neutralising HCoV 
antibodies facilitating cell 
entry and viral replication 
(antibody-dependent 
enhancement)

►► Reinfection with commonly circulating HCoV is 
frequent76 77

►► Higher levels of neutralising and non-neutralising 
CoV antibodies have been found in adults, especially 
elderly compared with children78 79 148

►► Cellular immunity to SARS-CoV-2 found in some non-
exposed individuals88–90

►► Higher numbers of cross-reactive T cells found in 
elderly80

►► Children with COVID-19 have a less robust T cell 
response to spike protein (lower frequency of CD25+ 
and IFN-γ-producing CD4+ T cells), lower neutralising 
antibody levels and less antibody-dependent 
enhancement78

(4) Immunosenescence and inflammaging

Age-related changes in the 
immune system including 
chronic CMV infection

►► Decline in innate and 
adaptive immune function 
in elderly leads to reduced 
SARS-CoV-2 clearance

►► Chronic proinflammatory 
state associated with age 
predisposes to cytokine storm

►► CMV’s effect on T cells 
leading to reduced capacity 
for immune responses to 
novel viral infections such as 
SARS-CoV-2

►► Increase in abundance and activity of NLRP3 
inflammasome with age might be associated with 
severe COVID-1999 100

►► Diseases associated with inflammaging (eg, 
cardiovascular, diabetes, obesity) are risk factors for 
severe COVID-1997

►► CMV causes clonal T cell proliferation and a reduction 
in naïve T cell diversity103

►► CMV increases inflammatory-mediated cytokines such 
as TNF-α and IL-6106

(5) Comorbidities

Obesity, diabetes, 
hypertension, chronic lung, 
heart and kidney disease, 
and smoking

►► Likely related to endothelial 
damage

►► Younger age groups less often suffer from the 
comorbidities that have been associated with severe 
COVID-19 in adults36

►► Younger age groups with these 
conditions do not appear to develop 
severe COVID-197 107–109

(6) Vitamin D

Anti-inflammatory and anti-
oxidative properties

►► Lower vitamin D levels ►► Vitamin D is reduced in older age groups, as well as 
in obesity and chronic kidney disease, both of which 
are associated with more severe COVID-19117 118 120

►► Vitamin D levels lower in SARS-CoV-2-positive 
individuals and negatively correlated with severity of 
radiological findings124 125

►► Infants less likely to be vitamin D deficient than older 
age groups, as supplemented in many countries225

Continued
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Hypothesis
Key factors

Proposed mechanism In support of hypothesis Against hypothesis

(B) FACTORS PROTECTING CHILDREN

(1) Immune system

Age-related differences in 
immune response

►► Stronger innate, trained 
immune response leading 
to more effective virus 
containment/clearance

►► Weaker adaptive immune 
response and therefore less 
hyperinflammation

►► Lower proinflammatory 
cytokine responses (cytokine 
storm)

►► Children with COVID-19 have higher levels of IL-17A 
and IFN-γ78

►► Some other infections are also less severe in children, 
for example, dengue, Epstein-Barr virus, hepatitis A, 
measles, Legionnaires’ disease, polio, varicella

►► Age-related difference in immune 
response does not mirror age gradient 
in COVID-19 in which lower severity 
extends into early adulthood

►► Differences in the immune response 
do not protect against other 
respiratory viruses to which children 
are generally more commonly and 
more severely affected28

►► Stronger innate immune response 
may be both protective but may also 
worsen cytokine storm32 136 138 139

►► Children are not less prone to develop 
a cytokine storm leading to ARDS with 
RSV and influenza infections138 140

►► Immunocompromised not at as 
high risk of severe COVID-19 as 
would expect if this were principal 
mechanism226

(2) Recurrent and concurrent infections

Viral and mycoplasma 
infections

►► More frequent infections 
with other pathogens may 
help fight SARS-CoV-2

►► Children infected with SARS-CoV-2 often have co-
infections with other viruses or mycoplasma141 142

►► Recurrent viral infections could lead to epigenetic 
changes in trained immunity making it more effective 
in clearing SARS-CoV-2134

(3) Cross-reactive coronavirus antibodies and T cells

Exposure to commonly 
circulating HCoV (229E, 
HKU1, NL63, OC43)

►► Pre-existing neutralising 
antibodies and T cell 
immunity to commonly 
circulating HCoV in younger 
age groups cross protect 
against SARS-CoV-2

►► Antibodies to commonly 
circulating CoV2 are cross-reactive 
with SARS-CoV-2, but rarely 
cross-neutralising146–148

►► No difference in antibody levels 
against HCoVs between children 
infected with SARS-CoV-2 and those 
who are not150

►► Higher levels of neutralising CoV 
antibodies have been found in adults 
compared with children78

►► Higher numbers of cross-reactive T 
cells found in eldery80

►► The role of cross-reactive T cells 
remains unclear88–90

►► Unlikely to explain lower severity 
extending into early adulthood

(4) Microbiota (nasopharyngeal, oropharyngeal, lung and/or gastrointestinal)

Colonising microbial flora ►► Differences in the microbiota 
might influence susceptibility 
to SARS-CoV-2

►► Microbial interactions and competition might limit 
colonisation and growth of SARS-CoV-2154 155

►► ACE2 highly expressed in the nasopharynx and 
gastrointestinal tract152 153

►► Observed differences in the gastrointestinal 
microbiota between patients infected with SARS-
CoV-2 and healthy controls160–162

►► Administration of probiotics leads to quicker 
improvement of COVID-19-related symptoms227

(5) Melatonin

Anti-inflammatory and anti-
oxidative properties

►► Higher melatonin levels ►► Children have higher levels of melatonin190 191

►► Bats, which suffer from minimal or no symptoms 
of CoV infection, have higher levels of melatonin 
compared with humans189

►► Melatonin inhibits calmodulin which increases ACE2 
expression and retention on cell surface180 181

►► In silico studies suggest that melatonin inhibits SARS-
CoV-2’s main protease185

Table 1  Continued

Continued
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(6) Off-target effects of live vaccines

Trained immunity from BCG, 
MCV, OPV

►► More recent vaccination with 
live vaccines that have off-
target effects

►► Trials show BCG-induced protection against viral 
infections194 195

►► Possible correlation between different BCG countries’ 
vaccination policies and severity of COVID-19200–202

►► More recent BCG, MMR and OPV vaccination in 
younger age groups might protect against severe 
COVID-19199 208 209

►► Off-target immunomodulatory effects 
are unlikely to be long lasting205 206

►► Many other explanations for 
differences between countries’ rate 
and severity of COVID-19203 205

(7) Exposure

Intensity of viral exposure ►► Severity of COVID-19 
associated with initial viral 
load

►► Children are predominantly infected by transmission 
from adults6 208 209

►► Children have less workplace, shopping, travel and 
nosocomial exposure to SARS-CoV-2

►► For SARS-CoV and MERS-CoV, subsequent 
generations of virus with reduced pathogenicity 
reported217 218

►► No evidence for reduced virulence 
of SARS-CoV-2 in second-generation 
infections219 220

ACE2, angiotensin converting enzyme 2; ARDS, acute respiratory distress syndrome; CMV, cytomegalovirus; HCoV, human coronavirus; IFN, interferon; IL, 
interleukin; MCV, measles-containing vaccine; MERS-CoV, Middle East respiratory syndrome coronavirus; MMR, measles-mumps-rubella; NK, natural killer; NLRP3, 
NOD-containing, LRR-containing and pyrin domain-containing protein 3; OPV, oral polio vaccine; RSV, respiratory syncytial virus; TMPRSS2, transmembrane serine 
protease 2; TNF, tumour necrosis factor.

Table 1  Continued

Factors leading to adults being at higher risk
Differences in the endothelium and clotting function
SARS-CoV-2 can infect endothelial cells and cause vasculitis.29 30 
Activation of coagulation pathways and formation of micro-
thrombi, as a result of endothelial damage, as well as angiogen-
esis play an important part in the pathogenesis of COVID-19 
and can lead to thrombotic complications such as heart attacks 
and strokes.29 31–34 This could also explain why patients with 
conditions that affect the endothelium, such as diabetes and 
hypertension, are at greater risk for severe COVID-19.35–37

The endothelium in children is less ‘predamaged’ compared 
with adults and the coagulation system also differs, which 
makes children less prone to abnormal clotting.38 Of note, the 
age profile of severe COVID-19 (and the increased risk in men) 
mirrors that of thrombotic diseases such as deep vein thrombosis.

Reports of children presenting with a more serious Kawa-
saki disease/toxic shock-like illness (‘Paediatric Inflammatory 
Multisystem Syndrome Temporally associated with SARS-CoV-2 
[PIMS-TS]’ in Europe; also known as Multisystem Inflammatory 
Syndrome in Children [MIS-C] in the USA) might seem to also 
support the concept that vascular function plays an important 
role in the pathogenesis of COVID-19.39–47 However, the patho-
genesis of PIMS-TS, which usually presents 4–6 weeks after 
infection, differs from acute COVID-19, as it is likely to be an 
autoimmune phenomenon.48 In addition, the hyperinflamma-
tion underlying PIMS-TS is different to that observed in adults 
with severe COVID-19, which includes higher levels of IL-7 and 
IL-8 and lower levels of effector CD4+ T cells.48

Another intriguing observation is that chilblain-like skin 
lesions (usually on the lower extremities) in association with 
COVID-19 have been described more often in children and 
young adults.49–53 The pathology underlying these lesions has 
been identified as endothelial viral invasion leading to vasculitis 
or thrombotic vasculopathy.

Angiotensin converting enzyme 2 receptors and 
transmembrane serine protease 2
Angiotensin converting enzyme 2 (ACE2) is the main receptor 
for the entry of SARS-CoV-2 into human cells.54 This receptor 
is present on many cells including epithelial cells of the naso-
pharynx, lungs, heart, kidney, intestine, liver, testis, placenta, 

central nervous system and blood vessels, as well as macro-
phages.55 56 The expression of ACE2 in nasal and lung epithelium 
increases during childhood and further during adulthood.57–59 
Furthermore, it has also been postulated that children have ACE2 
receptors with a lower affinity for SARS-CoV-2 and a different 
distribution across body sites, making the entry of SARS-CoV-2 
into cells more difficult.55 However, while the number and 
affinity of ACE2 receptors on epithelial cells increases with age 
and is influenced by other factors, such as smoking, diet, diabetes 
mellitus, drugs, gender and genetics,37 55–57 60 61 it has not been 
shown that this leads to differences in the manifestations of 
COVID-19. Furthermore, ACE2 receptor abundance decreases 
in the elderly, the age group that is most susceptible to COVID-
19. In contrast, in patients who are taking ACE inhibitors or 
angiotensin receptor blockers for arterial hypertension, ACE2 is 
overexpressed and it has been postulated that this renders these 
individuals more susceptible to severe COVID-19.62 63 However, 
this is controversial, partly explicable by the complexity of the 
regulation of the ACE2-angiotensin system, which is important 
in regulating the immune response, especially in the lungs, where 
it plays a role in protecting against acute respiratory distress 
syndrome (ARDS). In animal studies, ACE2 protects against 
SARS-CoV-2 and influenza-associated lung injury.64 65 After 
SARS-CoV-2 gains entry into cells through the ACE2 receptor, 
ACE2 expression is downregulated, which prevents it from 
exerting its anti-inflammatory properties and from converting 
angiotensin II to angiotensin (1–7). The consequent excess of 
angiotensin II might be partly responsible for the organ injury in 
COVID-19,66 as serum levels of angiotensin II are significantly 
elevated in SARS-CoV-2-infected patients and there is a positive 
correlation with viral load and lung damage.67 This fits with the 
finding that in patients with diabetes mellitus, in whom ACE2 
expression is reduced (likely due to glycosylation), COVID-19 is 
associated with severe lung injury and ARDS.35 36

While variants in the gene which encodes for ACE2 are linked 
to the risk of severe COVID-19,68 it is still unclear if there is an 
association between the level of circulating ACE2 and severity 
of COVID-19. Nevertheless, it is possible that higher circulating 
levels of ACE2 in blood might neutralise virus and protect against 
lung damage through inactivation of circulating angiotensin II. In 
mice, treatment with human ACE2 mitigates lung injury during 
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influenza infection.69 Moreover, serum ACE2 levels are nega-
tively correlated with body mass index and oestrogen levels,70 
which could contribute to the association between obesity and 
male sex with severe COVID-19.

In addition to the ACE2 receptor, SARS-CoV-2 entry into 
cells involves transmembrane serine protease 2 (TMPRSS2), 
which cleaves the viral spike protein. Like ACE2, TMPRSS2 has 
been reported to increase with age on nasal and lung epithelial 
cells.58 59 71 However, two recent studies did not confirm these 
findings.72 73

Pre-existing immunity from coronavirus antibodies and T cells
Commonly circulating human coronaviruses (HCoV)-229E, 
HCoV-HKU1, HCoV-NL63 and HCoV-OC43 are responsible 
for approximately 6%–8% of acute respiratory tract infections.1 
Most individuals develop antibodies to HCoVs during child-
hood.74 75 However, despite seroconversion at an early age, 
re-infection with HCoVs later in life is common76 77 and levels 
of neutralising and non-neutralising cross-reactive antibodies, as 
well as cross-reactive T cells increase with age.78–80

Pre-existing non-neutralising antibodies can bind to virions, 
which can then more easily enter macrophages and granulo-
cytic cells, a mechanism called antibody-dependent enhance-
ment (ADE). Such virions covered in antibodies can also more 
easily replicate, leading to higher viral loads.81 Children with 
COVID-19 have lower neutralising antibody levels and less ADE 
than adults.78 Higher levels of non-neutralising cross-reactive 
HCoVs antibodies might partly explain increased susceptibility 
to severe COVID-19 in older adults.79 ADE is a phenomenon 
that also needs to be considered in the development of vaccines, 
as enhanced disease after viral challenge postvaccination has been 
observed after vaccination against SARS-CoV and MERS-CoV in 
animal models,82–86 and in the use of convalescent plasma as a 
treatment option.87

Infection with commonly circulating coronaviruses leads 
to long-lasting T cell immunity to spike (S) protein, nucleo-
capsid (N) protein and non-structural NSP7 and NSP13 of 
ORF1. However, the role of cross-reactive T cells in relation 
to SARS-CoV-2 remains unclear.88–90 It has been suggested that 
pre-existing T cells with low avidity, which are often usually 
present in higher numbers in the elderly, negatively impact T 
cell responses to SARS-CoV-2.80 Children with COVID-19 have 
been shown to have a less robust T cell response to the spike 
protein.78

Immunosenescence, inflammaging and chronic CMV infection
Ageing is associated with immunosenescence, a gradual decline 
in innate immunity, exemplified by ineffective pathogen recog-
nition, macrophage activation, reduced neutrophil activity and 
natural killer [NK] cytotoxic activity and in adaptive immunity, 
associated with thymic atrophy, lymphopenia, a decrease in 
naïve T cells and an increase in anergic memory lymphocytes 
leading to an exhaustion of helper T cells, cytotoxic T cells and 
B cells.91–96 Immunosenescence likely contributes to reduced 
SARS-CoV-2 clearance.

A second age-related change in the immune system is inflam-
maging, a chronic pro-inflammatory state that develops with 
advanced age and has been associated with inflammatory diseases 
such as atherosclerosis and diabetes, which are associated with 
severe COVID-19.97 98 The predisposition to cytokine storm 
in the elderly could be explained by an increase in abundance 
and activity of the NOD-containing, LRR-containing and pyrin 

domain-containing protein 3 (NLRP3) inflammasome, which 
has been associated with severe COVID-19.99 100

Another immunological mechanism that might contribute to 
the age gradient in COVID-19 severity is the age-related increase 
in auto-antibodies against type I interferon (IFN) (especially 
IFN-α and IFN-ω), which are associated with severe COVID-19 
pneumonia.101 IFN type plays an important role in the innate 
antiviral response.102

Chronic cytomegalovirus (CMV) infection, which increases 
with age, may be a significant driver of inflammaging and immu-
nosenescence.103 Chronic CMV causes clonal T cell prolifera-
tion and a reduction in naïve T cell diversity, and also leads to 
an advanced differentiation status of CMV-specific CD8 T cells 
associated with either increased expression or downregulation 
of surface receptors, cytokine and transcription factors.103 104 
These effects of CMV on T cells may lead to a reduced capacity 
for immune responses to novel viral infections such as 
SARS-CoV-2.105 CMV also increases inflammatory-mediated 
cytokines such as tumour necrosis factor (TNF)-α and inter-
leukin (IL)-6,106 making the elderly with clinically silent CMV 
infection more susceptible to the cytokine storm associated with 
severe COVID-19.

Comorbidities
Children have a lower prevalence of the comorbidities that 
have been associated with severe COVID-19 in adults, such 
as obesity, diabetes, hypertension and chronic kidney, lung 
and heart disease.36 Even though, no definite risk factors have 
been identified in children, those with chronic lung disease 
(including asthma), cardiovascular disease and immunosup-
pression more often require hospital compared with previously 
healthy children.7 107–109 However, intriguingly, even children 
with serious medical conditions, who are on immunosuppressive 
or cancer treatment, are much less affected by COVID-19 than 
adults.110–113

Lower levels of vitamin D
Vitamin D has anti-inflammatory and anti-oxidative proper-
ties,114 and vitamin D deficiency has been associated with an 
increased risk for the development of respiratory tract infec-
tions.115 Mechanisms by which vitamin D might protect against 
respiratory viruses include increasing viral killing, reducing 
synthesis of pro-inflammatory cytokines and protecting the 
integrity of tight junctions thereby preventing infiltration of 
immune cells into lungs.116

The overlap between risk factors for severe COVID-19 
and vitamin D deficiency, including obesity,117 chronic kidney 
disease118 and black or Asian origin,119 suggests that vitamin D 
supplementation may play a role in prophylaxis or treatment 
of COVID-19.114 In many countries, vitamin D is routinely 
supplemented in infants younger than 1 year of age and in some 
countries even up to the age of 3 years. Furthermore, vitamin 
D levels are lower in older age groups, especially in men, in 
whom suplementation is less frequent.120 Several studies report 
a negative correlation between estimates of average vitamin D 
levels in the population and the incidence and mortality from 
COVID-19.121–123 One study found lower vitamin D levels in 
SARS-CoV-2-positive individuals compared with SARS-CoV-
2-negative individuals, even after stratifying for age over 70 
years.124 Another study found lower vitamin D levels in patients 
with COVID-19 compared with sex-matched, age-matched and 
season-matched controls.125 Furthermore, the level of vitamin 
D was negatively correlated with the severity of radiological 
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findings. Two other studies also found a correlation between low 
vitamin D levels and COVID-19 severity and mortality.126 127

In vitro studies show that calcitriol, the active form of vitamin 
D, has antiviral activity against SARS-CoV-2.128 A further 
important finding from a study in rats shows that vitamin D 
alleviates lipopolysaccharide-induced acute lung injury via the 
renin-angiotensin system (RAS),129 which is important in the 
pathogenesis of COVID-19, in which the degree of overactiva-
tion of the RAS is associated with poorer prognosis. Low vitamin 
D levels lead to higher RAS activity and higher angiotensin II 
concentrations.130

Factors protecting children
Differences in innate and adaptive immunity
In addition to direct cytotoxic effects of the virus, immune-
mediated mechanisms play a crucial role in the pathogenesis of 
COVID-19.131 There are important differences in the immune 
system between children and adults, which might contribute to 
the different manifestations of COVID-19.78 132

Children have a stronger innate immune response, which is 
the first-line defence against SARS-CoV-2, with a higher number 
of NK cells. Another important factor is ‘trained immunity’ 
which involves epigenetic reprogramming of innate immune 
cells (including NK cells) after exposure to certain stimuli, 
including infections and vaccinations, leading to ‘memory’.133 134 
These trained cells react faster and more strongly to subsequent 
pathogen challenge providing enhanced protection. However, 
this hypothesis would not explain, why this mechanism does 
not protect children against other respiratoryviruses.28 It is 
likely that immune responses, including IFN production, on 
mucosal surfaces are also important in the defence against 
SARS-CoV-2.135 To date, no studies have compared IFN produc-
tion by SARS-CoV-2 challenged epithelial or dendritic cells of 
children and adults.

In relation to adaptive immunity, children also have a higher 
proportion of lymphocytes and absolute numbers of T and B 
cells,136 while ageing is associated with a reduction in thymic 
activity and a reduction in naïve T cells.96 Adults infected by 
SARS-CoV-2 typically have decreased lymphocyte counts137 and 
it could be that higher numbers of lymphocytes, especially the 
large repertoire of naïve T cells which enables a strong T cell-
mediated immune response, play a role in protecting children 
against SARS-CoV-2.

A further proposed immunological explanation is that chil-
dren are less capable of mounting the pro-inflammatory cyto-
kine storm, which plays an important role in the pathogenesis 
of severe COVID-19 and is responsible for multiorgan failure in 
critically ill patients.32 136 138 139

Hospitalised children with COVID-19 have higher serum 
levels of IL-17A and IFN-γ, but not TNF-α or IL-6.78 Against 
this theory, however, is that in RSV or influenza infection, in 
contrast, children are no less prone than adults to developing a 
cytokine storm leading to ARDS.138 140

More frequent recurrent and concurrent infections
Children infected with SARS-CoV-2 often have co-infec-
tions with other viruses (including commonly circulating 
HCoVs).141–143 These viruses could interfere with the replica-
tion of the SARS-CoV-2.144 Frequent recurrent viral infections 
could also induce an enhanced state of activation of the innate 
immune system, including epigenetic changes in trained immu-
nity, making it easier to clear SARS-CoV-2.134

Cross-reactive coronavirus antibodies and T cells
Althoughit has been suggested that children might be protected 
against SARS-CoV-2 as a result of pre-existing cross-reactive 
antibodies from more frequent and recent HCoVs infections,145 
preliminary data show that, while antibodies to HCoVs cross-
react with the spike protein of SARS-CoV-2 and SARS-CoV, 
these antibodies are rarely neutralising, as they do not bind to 
SARS-CoV-2 receptor binding domain.146–149 In accordance 
with this, no difference in antibody levels against HCoVs was 
found between children infected with SARS-CoV-2 and those 
who were not infected.150 Furthermore, both neutralising and 
non-neutralising antibody levels are higher in adults, espe-
cially elderly adults compared with children.78 79 The same is 
true for cross-reactive T cells to SARS-CoV-2, which are also 
present in higher numbers in the elderly and might be detri-
mental.80 It is likely that IgA on mucosal surfaces is important 
for defence against SARS-CoV-2.151 To date, however, no study 
has compared SARS-CoV-2 IgA levels or avidity between chil-
dren and adults.

Microbiota
Another potential explanation for the less severe manifestations 
of COVID-19 in children are the differences in their oropharyn-
geal, nasopharyngeal, lung and/or gastrointestinal microbiota. 
The microbiota plays an important role in the regulation of 
immunity, inflammation, and mucosal homeostasis, as well as in 
the defence against pathogens. Thus, the microbiota might affect 
the susceptibility to SARS-CoV-2 infection and severity, or, given 
that ACE2 is highly expressed in the respiratory and gastroin-
testinal tract,152 153 infection with SARS-CoV-2 might affect the 
microbiota and therefore inflammation.

Children are more heavily colonised with viruses and 
bacteria than adults, especially in the nasopharynx, where 
microbial interactions and competition might limit the growth 
of SARS-CoV-2.154 155 The association between viral load and 
COVID-19 severity provides some support for this hypoth-
esis.156–158 While one small study did not find significant 
differences in the nasopharyngeal microbiota between patients 
infected with SARS-CoV-2 and healthy controls,159 other studies 
have reported significant differences in the oropharyngeal, lung 
and gastrointestinal microbiota between these groups.160–164

In relation to the gastrointestinal microbiota, patients infected 
with SARS-CoV-2 have reduced bacterial diversity with a lower 
relative abundance of certain bacterial phyla including Faecali-
bacterium, and a higher relative abundance of others including 
Bacteroides.160–162 While Faecalibacterium is known to have 
anti-inflammatory properties,165 Bacteroides has been associated 
with decreased gastrointestinal ACE2 expression.166 The gastro-
intestinal microbiota differs with age, with children generally 
having higher numbers of Bifidobacterium.167 168 Differences in 
the gastrointestinal microbiota have also been observed between 
patients who do or do not excrete SARS-CoV-2 in their stool.169 
However, microbiota findings can be influenced by many 
different factors, including age, hospital admission, antibiotic 
administration and diet.170 171 Therefore, the contribution, if 
any, of differences in the microbiota to differences in severity 
of COVID-19 remains unclear and cause versus effect will be 
difficult to determine.

Higher levels of melatonin
Melatonin has anti-inflammatory and anti-oxidative properties 
through several different mechanisms.172 173 For example, this 
hormone increases proliferation and maturation of NK cells, T 
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and B lymphocytes, granulocytes and monocytes in both bone 
marrow and other tissues,174 and increases antigen presenta-
tion by macrophages.175 In addition, melatonin decreases serum 
levels of IL-6, TNF-α and high-sensitivity C reactive protein,176 
and suppresses nuclear factor kappa-B.177

Melatonin protects against ARDS and haemorrhagic shock 
during viral infections.178 179 Melatonin also inhibits calmod-
ulin, which increases ACE2 expression and retention on the 
cell surface.180 181 Melatonin might also block CD147,182 which 
is another cellular receptor for of SARS-CoV-2 entry183 and 
involved in regulating chemotaxis and lung inflammation.184 
Furthermore, in silico studies suggest that melatonin inhibits 
SARS-CoV-2’s main protease.185 It has therefore been suggested 
that melatonin could be used as prophylaxis or treatment in 
COVID-19.186 187 A randomised trial to evaluate the efficacy 
of melatonin for prophylaxis against SARS-CoV-2 infection in 
healthcare workers is ongoing.188

Bats, which are the main reservoir of coronaviruses and suffer 
from minimal or no symptoms, have higher levels of melatonin 
compared with humans.189 In humans, melatonin secretion is 
negatively correlated with age, with particularly high levels in 
infants,190 191 which could contribute to the milder symptoms in 
this age group.

Off-target effects of vaccines
Many live vaccines have off-target (non-specific) immunomod-
ulatory effects beyond protection against their target disease.192 
For BCG and measles-containing vaccines (MCV), this includes 
reduced all-cause mortality in high-mortality settings and protec-
tion against viral infections.193–195 The mechanisms underlying 
the immunomodulatory effects of vaccines are the subject of 
ongoing investigation. BCG vaccine influences the innate and T 
cell immunity by epigenetic reprogramming of immune cells and 
by altering cytokine responses.196–198

As children have generally been received BCG and other 
live vaccines more recently than adults, it has been postulated 
that this contributes to age-related difference in COVID-19 
severity.199

Ecological studies identifying associations between countries’ 
BCG vaccination policies and rates and the severity of their 
COVID-19 outbreak purport to provide evidence in support of 
this.200–202 However, association is not the same as causation and 
there are exceptions to this observation.203 204 In addition, many 
of the articles claiming an association do not account for likely 
confounding factors between countries, such as different diag-
nostic and reporting procedures, different epidemic curves and 
different capacity of medical systems.203 205 It is also unlikely that 
the beneficial effects of BCG vaccination last for many years as 
they are likely abrogated by the impact of intervening vaccines 
and other factors that also modulate the immune system. It is 
therefore not unexpected that no difference in COVID-19 infec-
tion rate was found decades after vaccination in BCG-vaccinated 
individuals compared with BCG-naïve individuals.206 RCTs of 
BCG to reduce the severity of COVID-19 are ongoing.207

Like BCG, MCV and oral polio vaccination has also been 
suggested to contribute to the difference in the severity of 
COVID-19.208 209 Fewer studies have investigated the mecha-
nisms underlying the immunomodulatory effects of MCV, but 
they have shown an association between MCV and a decrease in 
circulating leukocytes and lymphocytes, with a decrease in CD4 
cells and an increase in CD8 cells.210 211 An RCT of measles-
mumps-rubella vaccine to reduce the severity of COVID-19 is 
planned.212

Intensity of exposure to SARS-CoV-2
Viral load influences the severity of COVID-19156–158suggesting 
that lower intensity of viral exposure might be another factor 
leading to less severe disease.213 Children might have less intense 
exposure to SARS-CoV-2 compared with adults who generally 
have had workplace, shopping, travel and nosocomial expo-
sure.6 214–216

As children are usually infected by an adult, they are infected 
by a second or third generation SARS-CoV-2. For SARS-CoV 
and MERS-CoV, subsequent generations of virus were reported 
with reduced pathogenicity compared with the first-generation 
virus.217 218 However, to date, this has not been reported for 
SARS-CoV-2. In contrast, an antigen drift through a mutation 
called D614G in the spike protein has been suggested to lead to 
higher viral loads and viral transmission without changing patho-
genicity.219 220 It is unclear whether this was the result of higher 
fitness or chance. While the D614 variant of SARS-CoV-2 has 
been the main driver of the pandemic in China, the G614 variant 
is the main strain spreadingthrough Europe and the USA.221

Conclusion
In summary, the observation that, compared with other respira-
tory viruses, children have less severe symptoms when infected 
by SARS-CoV-2 is surprising and not yet understood. Further-
more, it is also uncertain why children with the usual risk factors 
for infections, such as immunosuppression, are not at high risk 
for severe COVID-19, while previously healthy children can on 
rare occasions become severely ill.110–113 222 Although there are 
several hypotheses for why children are less affected by COVID-
19, with the notable exception of age-related changes in immune 
and endothelial/clotting function, most do not explain the 
observed age-gradient in COVID-19 with severity and mortality 
rising steeply after the age of 60 to 70 years. Unravelling the 
mechanisms underlying the age-related differences in the severity 
of COVID-19 will provide important insights and opportunities 
for the prevention and treatment of this novel infection.
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