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Abstract
Vitamin D overdosing includes hypercalcemia, hypercalciuria, and mineral deposits in soft tissues. A safety upper limit 
of 4000 IU/day, which is consistently accepted, has been challenged, since the risk of adverse events in other systems than 
calcium-phosphate homeostasis may depend not only on the dose, but on the outcome, the treatment regimen, and possibly 
the age, sex and vitamin D status. The therapeutic window of vitamin D supplementation may be narrower than hitherto 
recognized. The prevention and/or correction of vitamin D deficiency/insufficiency with 800–1000 IU/daily of vitamin D 
or 10 µg/day of calcifediol are safe. Because of their potential harm, larger doses given on the long term or in intermittent 
regimens should not be selected.
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Introduction

Vitamin D is an important regulator of calcium and phos-
phate homeostasis. Synthesized in the skin under the influ-
ence of UV light, vitamin D (cholecalciferol) undergoes 
a first hydroxylation in position 25 in the liver, leading to 
25-hydroxyvitamin D (calcifediol), and a second one in 
position 1 in the kidney, leading to the active metabolite 
1,25-dihydroxyvitamin D (calcitriol) [1]. The latter step is 
stimulated by PTH, IGF-I and by low calcium or phosphate 
intakes or concentrations. Calcitriol stimulates intestinal 
trans-epithelial transport of calcium and phosphate through 
both genomic and non-genomic mechanisms [1]. Calcitriol 
is a potent stimulator of bone resorption [2], by increasing 
the expression and production of RANKL by osteoblasts 
[3]. Vitamin D deficiency impairs hypertrophic cartilage 
and bone mineralization, leading to rickets in children and 
osteomalacia in adults. Vitamin D status is evaluated by the 
measurement of circulating 25-hydroxyvitamin D (25OHD), 
preferentially with a standardized assay. Infusion of calcium 
and phosphate in vitamin D-deficient rats results in normal 
mineralization of hypertrophic cartilage and bone [4]. In sys-
temic VDR knock-out model, rickets and osteomalacia can 

be prevented by a diet rich in calcium and phosphate with 
lactose supplements to improve intestinal calcium absorp-
tion [1, 5]. By promoting optimal extra-cellular calcium and 
phosphate concentrations, the vitamin D system ensures the 
mineralization of newly deposited bone and cartilage matrix 
[6]. In a recent report, an infant with hypophosphatasia suf-
fered vitamin D deficiency-induced rickets, although serum 
calcium and phosphate were always entirely normal [7]. 
However, rickets was cured by vitamin D treatment alone, 
confirming some in vitro data which indicate a direct effect 
of vitamin D on osteoblast mediated mineralization [8]. 
These findings indicate that optimal extracellular calcium 
and phosphate concentrations are necessary for cartilage 
and bone mineralization, but vitamin D could exert a direct 
effect on the mineralization process as well, under certain 
circumstances.

The doses of cholecalciferol recommended for preventing 
rickets in childhood and osteomalacia in adults are widely 
accepted [9–11]. Indeed, a dose of 400 IU/day (10 µg) of 
vitamin D is recommended, together with 500 mg/day of 
dietary calcium [9] for the prevention of rickets. For the 
treatment of nutritional rickets, 2000 IU/day (50 µg) of 
vitamin D should be administered for at least 3 months, 
together with 500 mg/day of calcium. In adulthood, the 
various recommendations for the prevention of vitamin 
D deficiency range from 400 to 800 IU/day (10–20 µg) 
of cholecalciferol (reviewed in [10]). In the field of bone 
diseases, 800–1000 IU/day is a dose which is consistently 
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recommended in the oldest old individuals [12–14], whilst 
doses lower than 700 IU/day appear to be ineffective on frac-
ture risk [15]. Reduction of hip fracture risk is achieved by 
combining daily vitamin D and calcium [16]. In the most 
recent meta-analysis, the association vitamin D and calcium 
was associated with a 6 and 16% reduction of any fracture 
and hip fracture, respectively [17]. In this analysis, five out 
of six included randomized controlled trials were using 
800 IU/day. With this dose, 25OHD levels reach the thresh-
old for sufficiency of 50 nmol/l [18].

In several countries, calcifediol (25-hydroxyvitamin D) is 
often prescribed for the prevention and/or treatment of vita-
min D deficiency. Calcifediol appears to display a higher rate 
of intestinal absorption as compared with cholecalciferol. 
This compound could be particularly useful in liver failure, 
in drug-induced alterations of liver cytochrome enzymes 
activity, in genetic disorders of 25-hydroxylase and in gas-
trointestinal diseases [19]. Based on 25OHD circulating 
values, it appears that there is an at least threefold higher 
potency of calcifediol as compared with cholecalciferol [20], 
despite an important interindividual variation. Under these 
conditions, 10 µg/day of calcifediol may be equivalent to 
1200 IU/day of cholecalciferol and could be considered as 
a safe dose. No hypercalcemia was recorded with 20 µg/day 
of calcifediol [21].

Upper limit of safety

The upper limit of safety of cholecalciferol is proposed to 
be 4000 IU/day [11]. This upper limit of tolerance is based 
on 25OHD determinations and on the risk of hypercalce-
mia occurrence [18, 22–24]. A chronic dose of 95 µg/day 
(3800 IU/day) was considered as the lowest dose causing 
hypercalcemia in healthy adults. Indeed, elevated serum 
calcium was found in six subjects consuming 95 µg/day for 
3 months [25]. In contrast, 100 µg/day (4000 IU) were com-
pared to 25 µg/day (1000 IU) in a 5-month trial [23]. The 
maximum plateau serum 25OHD was 120 and 100 nmol/l, 
respectively. Neither serum calcium nor calcium-to-cre-
atinine ratio in second morning void significantly changed 
during the study. In a recent trial including 373 62-year 
old healthy and vitamin D-replete subjects, 400, 4000 and 
10,000 IU were administered daily for 3 years [26]. Hyper-
calcemia (total serum calcium > 2.55 mmol/l) occurred in 
0, 3 and 9% in the 400, 4000 and 10,000 IU/day groups, 
respectively. A 24-h urinary excretion higher than 7.5 mmol/
day, which defined hypercalciuria, was detected in 17, 22 
and 31% of the corresponding groups.

Vitamin D overdosing leading to overt hypercalcemia is 
rare and can result from the endogenous overproduction of 
the active metabolite calcitriol through 1-alpha hydroxyla-
tion in abnormal macrophages as encountered in sarcoidosis 

or other granulomatosis, or through vitamin D release from 
fat tissue storage in case of rapid loss of fat mass [27]. How-
ever, the most frequent cause of vitamin D overdosing is 
exogenous, i.e., by excessive intakes. Vitamin D excess due 
to iatrogenic administration of pharmacological doses of 
vitamin D is a rare cause of hypecalcemia. Large doses used 
to be given in the treatment of hypoparathyroidism before 
the availability of active vitamin D metabolites. Vitamin 
D excess is associated with increased intestinal calcium 
absorption and bone resorption [28]. The latter is respon-
sive to bone resorption inhibitors. Because of the prolonged 
half-life of the metabolite 25OHD, hypercalcemic-hyper-
calciuric syndrome can persist for several weeks to months 
after treatment discontinuation, with an important morbid-
ity and even extensive and permanent soft tissues damages 
by mineral deposits. A meta-analysis has included 37 ran-
domized controlled trials of vitamin D supplementation in 
which occurrence of hypercalcemia was recorded and 14 
for hypercalciuria [29]. It turned out that long-term vitamin 
D supplementation was associated with an increased risk of 
hypercalcemia and/or hypercalciuria (relative risk 1.54 and 
1.64, respectively. Hypercalciuria was only detected in trials 
with vitamin D doses superior to 800 IU/day.

Clinical expression of vitamin D overdosing includes 
hypercalcemia, hypercalciuria, and mineral deposits in soft 
tissues. Over the last few years, the safety of 4000 IU/day, 
which is consistently considered as the upper limit of safety, 
has been challenged, since the risk of adverse events may 
depend not only on the dose, but on the outcome, the treat-
ment regimen, and possibly the age, sex and vitamin D sta-
tus. The therapeutic window may be narrower than hitherto 
accepted for bone health, fall risk, frailty, kidney stones and 
mortality.

Bone health

In a randomized controlled trial, 400, 4000 or 10,000 IU/
day of vitamin D were administered to 311 healthy vita-
min D-replete, non-osteoporotic, 62-year old subjects [30]. 
At the end of 3 years, changes in distal radius volumetric 
BMD, as assessed by high resolution peripheral QCT, were 
− 1.2, − 2.4 and − 3.5% in the 400, 4000 and 10,000 IU/
day groups, respectively. The values in the two latter groups 
were significantly lower than in the 400 IU group. At distal 
tibia, volumetric BMD was lower than the 400 IU group in 
the 10,000 IU group only. There was no difference in total 
hip areal BMD. Serum 25OHD above 125 nmol/l was asso-
ciated with accelerated bone loss [30]. While 100,000 IU/
months corresponding to 3300 IU/day of vitamin D was 
without any effect on BMD nor fracture risk in individuals 
without vitamin D insufficiency (VIDA study) [31], there 
was a 2.6% increase in spine BMD in a subset of patients 
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with 25OHD less than 50 nmol/l at baseline [32]. In another 
trial conducted in subjects with a normal vitamin D status 
(mean baseline 25OHD: 77 nmol/l), vitamin D supplements 
of 2000 IU/day of cholecalciferol did not influence areal 
BMD at the spine, hip or whole body level over 2 years 
(VITAL study) [33]. When given to patients with 25OHD 
levels < 50 nmol/l, 2800 IU/day improved distal tibia bone 
strength, but not axial skeleton areal BMD over 3 months 
[34]. Not only high dose of vitamin D, but also the regimen 
may be associated with some adverse effects, as demon-
strated by a higher fracture risk when 500,000 IU of chole-
calciferol (equivalent to approximately 1400 IU/day) vitamin 
D was given on a yearly basis [35]. This study included 
2256 women older than 70 years. The fracture risk increased 
by 26% and was mostly observed during the first 3 months 
after dosing. Such a higher fracture risk is in agreement with 
300,000 IU (equivalent to 820 IU/day) given intramuscularly 
once a year, which was associated with a 49% increase in hip 
fracture risk [36]. In neither studies, subjects were recruited 
on the basis of low 25OHD levels. In another trial, the same 
total 300,000 IU annual dose of cholecalciferol was admin-
istered as 100,000 IU at 4-month interval [37]. In this trial, 
there was a 22% reduction in fracture risk. This indicates 
that the regimen (yearly vs 4 monthly) rather than the dose 
determines the outcome. As potential mechanism, should be 
reminded that a single oral bolus of 600,000 IU vitamin D 
was associated with a 50% increase in sCTX, which lasted 
for at least 2 months [38].

Falls

Like for fracture risk, a yearly oral administration of 
500,000  IU vitamin D of cholecalciferol (equivalent to 
1400 IU/day) was harmful since it was associated with a 
15% higher risk of falling [35]. Monthly doses of 100,000 IU 
in vitamin D-replete individuals with a mean age of 66 years 
were without any effect on fall risk [31] over 4 years. The 
same monthly dose given over 12 months to long-term care 
residents, with a mean age of 81 years and 25OHD lower 
than 50 nmol/l in a third of them, reduced acute respiratory 
incidence by 40%, but was associated with a more than two-
fold higher rate of falls, when compared to a 400–1000 IU/
day standard dose [39]. This indicates that the efficacy 
or the potential toxicity of vitamin D supplementation 
depends not only on the baseline vitamin D status, but also 
and most importantly on the type of variable assessed. A 
possible U-shape curve, with a narrow optimal therapeutic 
window, in the relationship between fall risk and vitamin 
D dose, was suggested by the higher incidence of fallers 
with 60,000 IU monthly (corresponding to 2000 IU/day) 
as compared with 24,000 IU (i.e., 800 IU/day) in a one-
year trial [40]. When 300 µg/month (equivalent to 10 µg/

day) of calcifediol was given in addition to the lower dose 
of cholecalciferol, falls were as frequent as with the higher 
cholecalciferol dose, supporting an equivalence of 10 µg cal-
cifediol and 1200 IU cholecalciferol. In this trial, there was 
no difference in the primary endpoint, i.e., changes in short 
physical performance battery, between both groups. Para-
doxically, the patients who reached the highest quartile of 
25OHD (> 110 nmol/l) by 12 months displayed a more than 
fivefold higher risk of falling than those reaching the low-
est quartile (< 75 nmol/l). In a 3-month randomized, double 
blind, controlled trial, a dose of 2800 IU/day was given to 
women 60–80 years of age, with a baseline 25OHD lower 
than 50 nmol/l. It reduced maximal grip strength (− 9%) and 
knee flexion strength (− 13%), and increased by 4.4% the 
timed up and go test [41]. In another randomized controlled 
trial, the effects of a wide range of daily vitamin D doses on 
falls was tested in 66-year old women with baseline 25OHD 
levels lower than 50 nmole/l over 12 months [42]. There was 
a significant decrease in falls with medium doses of 1600, 
2400 and 3200 IU/day. In contrast, with the high doses of 
4′000 and 4800 IU/day, fall rates were as high as in the pla-
cebo group and significantly higher than with the medium 
doses. Fall rates were higher as serum 25OHD exceeded 
100 nmol/l. The relationship appeared to slightly differ in 
African-Americans, since a higher fall incidence rate was 
not observed the 4000–4800 IU/day doses. The conclusion 
of this study was that the tolerable upper limit of 4000 IU/
day may be lower in elderly women, particularly in those 
with a fall history. In the same study, areal BMD did not 
change irrespective of the dose [43]. Along this line, postural 
sway was not affected between daily doses of vitamin D of 
400, 4000 and 10,000 [44], vitamin D daily equivalent of 
5700 IU was not different from 800 IU in terms of muscle 
strength and balance [45], changes in muscle strength and 
mass were not different in the 40,000 IU/week vitamin D2 
(equivalent to 5700 IU/day) and placebo groups [46], whilst 
1000 IU/day increased lower limb muscle strength [47]. In a 
systematic review and meta-analysis published in 2011, the 
conclusion was that daily doses of 800 to 1000 IU consist-
ently demonstrated beneficial effects on muscle strength and 
balance [48]. In a 2014 meta-analysis, vitamin D increased 
muscle strength mainly in subjects with baseline 25OHD 
less than 30 nmol/l, and tended to be more effective in the 
≥ 65 years population [49]. However, because of the large 
heterogeneity in the supplementation protocols, it was not 
possible to detect any dose–response relationship.

Frailty

In the Study of Osteoporotic Fracture, a U-shape relation-
ship between frailty and circulating 25OHD levels has been 
reported in women [50], but not in men [51] at baseline. 
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Such an association in a large cohort may suggest some 
harmful influence of high vitamin D levels, at least in one 
gender. Probably in relation with vitamin D binding protein, 
which is higher in females than in males, particularly before 
menopause, in pregnancy and in hormone oral contraceptive 
users, total 25OHD might be slightly higher in females than 
in males, but without evidence of a difference in the free 
part of the metabolite [52]. This effect could be mitigated 
by the higher body fat in women. However, in the absence 
of randomized controlled trial assessing the effects of vari-
ous doses of vitamin D on frailty prevalence, a confounding 
by indication phenomenon cannot be excluded. Indeed, in a 
study conducted in nursing home veterans, the more likely 
to be frail were the groups of non-users of vitamin D supple-
ments with low 25OHD levels, and those receiving vitamin 
D supplements and having high 25OHD levels, as compared 
with vitamin D supplements non-users, but with similar high 
25OHD levels [53].

Renal stone

In the WHI trial, a 17% higher risk of renal stones has 
been reported [54]. With a mean baseline calcium intake 
of about 1150 mg/day, the subjects were randomly assigned 
to 400 IU/day of vitamin D and 1000 mg/day of elemental 
calcium, or a placebo. The higher risk of renal stones is 
more likely attributable to the high calcium intakes than to 
the low vitamin D dose. Indeed, a meta-analysis including 
nine trials and 9619 patients, but not the WHI study, the 
relative risk of developing renal stones was 0.66 (not sig-
nificant) for vitamin D doses ranging from 800 to 5700 IU/
day (8 out of 9 studies used vitamin doses below 2900 IU/
day) [29]. Surprisingly, in a dose–response study, with vita-
min D supplements ranging from 400 IU to 4800 IU/day for 
12 months, the prevalence of hypercalcemia or hypercalciu-
ria did not appear to be dose-dependent [55]. Over a median 
observation time of 3.3 years, monthly supplementation with 
100,000 IU (equivalent to 3300 IU daily) did not influence 
the incidence of renal stones or hypercalcemia episodes [56].

Mortality

Numerous observational studies have shown a higher all-
cause mortality with vitamin D deficiency/insufficiency, on 
a 25OHD concentration-dependent manner [57–61]. Below 
30 nmole/l, mortality was increased more than twofold. A 
nadir in the curves was found at a 25OHD level of around 
75 nmol/l. Some trend to higher mortality could be sug-
gested above 120 nmole/l [57, 61, 62]. However, this trend 
disappeared in the NHANES III study when 25OHD was 
again measured using a standardized assay [62]. Vitamin D3, 

but not vitamin D2 nor vitamin D active metabolites sup-
plementation was associated with a lower mortality [59, 60]. 
Vitamin D with calcium reduced mortality by 6% in a patient 
level pooled analysis of 70,528 patients from 8 vitamin trials 
[63]. No randomized controlled trial had mortality as pri-
mary endpoint. Mortality was mainly significantly decreased 
when mean baseline 25OHD was below 50 nmol/l [60]. In 
contrast, 100,000 IU vitamin D2 given at 3-month interval 
was associated with 19.7% deaths as compared with 16.5% 
in controls, in 85-year old subjects  living in care home 
accommodation [64]. There was no difference in mortality 
when 54-year old patients with heart failure were given a 
dose as high as 4000 IU/day vitamin D for 3 years [65].

Conclusion

The upper limit of vitamin D dose safety may differ depend-
ing on the vitamin D status of the recipient (vitamin D defi-
cient, insufficient or sufficient), the dose, the regimen (daily 
or intermittent administration) and the outcome (falls, hyper-
calcemia, hypercalciuria). Age and sex may also play a role. 
The prevention and/or correction of vitamin D deficiency/
insufficiency with 800–1000 IU/daily of vitamin D are safe, 
as would be 10 µg/day of calcifediol. Because of their poten-
tial harm, larger doses given on the long term or in intermit-
tent regimens should not be selected.
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