

# Plasma Exchange Induces Vitamin D Deficiency



Results

Thomas F Hiemstra<sup>1</sup>, Alina Casian<sup>2</sup>, Paul Boraks<sup>3</sup>, David R Jayne<sup>2</sup>, Inez Schoenmakers<sup>4</sup>

1Departments of Nephrology and Clinical Pharmacology, University of Cambridge, <sup>2</sup>Lupus and Vasculitis Clinic and <sup>3</sup>Apheresis Unit, Addenbrooke's Hospital, Cambridge, and <sup>4</sup>Elsie Widdowson Laboratories, MRC Human Nutrition Centre, Cambridge

#### Background

- Plasma exchange (PEX) is widely used for the treatment of antibodymediated diseases including ANCA-associated vasculitis and transplant rejection.
- PÉX causes undesirable depletion of non-pathogenic factors including fibrinogen and clotting factors, and is associated with hypocalcaemia.
- The effects of PEX on vitamin D metabolism are unknown.

## Hypothesis

PEX depletes vitamin D binding protein, thereby removing vitamin D metabolites and inducing vitamin D deficiency.

#### Methods

- We performed a single-centre prospective observational study of consecutive patients receiving plasma exchange at Addenbrooke's Hospital, Cambridge.
  - Inclusions
    - Informed consent
    - Aged ≥ 18 years
    - Requirement for at least 5 x PEX
  - Exclusions:
    - Treatment with vitamin D metabolites or analogues
    - Treatment with calcimimetics or PTH-related compounds
    - Known vitamin D deficiency
    - Genetic defects of the vitamin D endocrine system
    - Received PEX within previous 12 months

## Design



Vitamin D metabolites and DBP were determined in plasma and the plasma effluent before the start of treatment, after completion, and after 7 and 28 days respectively.

#### Baseline characteristics

| n                                 | 11             |
|-----------------------------------|----------------|
| Age (years)                       | 59 ± 13        |
| Gender                            |                |
| Male                              | 7              |
| Female                            | 4              |
| Diagnoses                         |                |
| ANCA-associated vasculitides      | 5              |
| Myasthenia gravis                 | 3              |
| Paraneoplastic neuropathy         | 2              |
| VGKC-Ab associated encephalopathy | 1              |
| Renal function                    |                |
| Creatinine (µmol/L)               | 107 (74 - 379) |
| eGFR (ml/min/m <sup>2</sup> )     | 56.9 ± 39.5    |
| 25-Hydoxyvitamin D3 (nmol/L)      | 50.6 ± 30.1    |
| Vitamin D strata (n, %)           |                |
| Sufficient ( > 50nmol/L)          | 5 (45)         |
| Insufficient (25-50nmol/L)        | 4 (36)         |
| Deficient (<25nmol/L)             | 2 (18)         |
| Parathyroid hormone (pg/mL)       | 161 (98 - 343) |
| Vitamin D binding protein (µg/mL) | 206.5 ± 64.7   |
| Albumin (g/dL)                    | 32 ± 9         |
| Corrected Calcium (mmol/L)        | 2.23 ± 0.12    |
| Phosphate (mmol/L)                | 1.26 ± 0.29    |
| Haemoglobin (g/dL)                | 11.4 ± 3.2     |

## line vitamin D Status was not 4. Five plasma ex

Baseline vitamin D Status was not correlated with renal function.



2. Five plasma exchange treatments significantly reduced 25-hydroxyvitamin D levels from 49.7 ± 29nmol/L to 22 ± 9.4nmol/L (p = 0.0017). 25-Hydroxyvitamin D remained lower 7 days (26.4 ± 9.8nmol/L, p = 0.02) and 28 days (30.8 ± 15.5, p = 0.048) after cessation of plasma exchange.



3. Vitamin D levels were inversely correlated with the number of plasma exchanges (p = 0.0005). Further, PEX significantly reduced DBP levels from 206.5 ± 64.7μg/mL to 98.5 ± 34μg/mL (p = 0.0001), although DBP had recovered to baseline levels 7 days after PEX.



4. Five plasma exchange treatments significantly reduced 1,25 dihydroxy-vitamin D levels from 103  $\pm$  52pmol/L to 42  $\pm$  4pmol/L (p = 0.003), but levels had returned to baseline levels after 7 days.



5. PEX significantly reduced corrected Calcium to 1.98 ± 0.78mmol/L (p=0.0007), but corrected calcium recovered to pre-treatment levels within 7 days after cessation of PEX.



6. 1,25 Dihydroxyvitamin D was strongly correlated with serum calcium  $(r^2 = 0.58, p = 0.0018)$ 



#### Conclusions

#### Plasma exchange

- 1. induced marked, sustained 25-hydroxyvitamin D levels
- 2. induced acute 1,25 dihydroxyvitamin D (calcitriol) levels
- 3. depleted vitamin D binding protein

DBP depletion by PEX removes its cargo of vitamin D metabolites.

Acute PEX-induced calcitriol deficiency contributes to PEX-associated hypocalcaemia.

Vitamin D should be monitored and supplemented in patients receiving PEX.

