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Abstract: Vitamin D is a crucial micronutrient, critical to human health, and influences many physio-
logical processes. Oral and skin-derived vitamin D is hydroxylated to form calcifediol (25(OH)D) in
the liver, then to 1,25(OH)2D (calcitriol) in the kidney. Alongside the parathyroid hormone, calcitriol
regulates neuro-musculoskeletal activities by tightly controlling blood-ionized calcium concentrations
through intestinal calcium absorption, renal tubular reabsorption, and skeletal mineralization. Be-
yond its classical roles, evidence underscores the impact of vitamin D on the prevention and reduction
of the severity of diverse conditions such as cardiovascular and metabolic diseases, autoimmune
disorders, infection, and cancer. Peripheral target cells, like immune cells, obtain vitamin D and
25(OH)D through concentration-dependent diffusion from the circulation. Calcitriol is synthesized
intracellularly in these cells from these precursors, which is crucial for their protective physiological
actions. Its deficiency exacerbates inflammation, oxidative stress, and increased susceptibility to
metabolic disorders and infections; deficiency also causes premature deaths. Thus, maintaining opti-
mal serum levels above 40 ng/mL is vital for health and disease prevention. However, achieving it
requires several times more than the government’s recommended vitamin D doses. Despite extensive
published research, recommended daily intake and therapeutic serum 25(OH)D concentrations have
lagged and are outdated, preventing people from benefiting. Evidence suggests that maintaining
the 25(OH)D concentrations above 40 ng/mL with a range of 40–80 ng/mL in the population is
optimal for disease prevention and reducing morbidities and mortality without adverse effects. The
recommendation for individuals is to maintain serum 25(OH)D concentrations above 50 ng/mL
(125 nmol/L) for optimal clinical outcomes. Insights from metabolomics, transcriptomics, and epige-
netics offer promise for better clinical outcomes from vitamin D sufficiency. Given its broader positive
impact on human health with minimal cost and little adverse effects, proactively integrating vitamin
D assessment and supplementation into clinical practice promises significant benefits, including
reduced healthcare costs. This review synthesized recent novel findings related to the physiology of
vitamin D that have significant implications for disease prevention.

Keywords: aging; 25(OH)D; calcifediol; calcitriol; cardiovascular diseases; hypovitaminosis D;
epidemiology; human diseases; morbidity and mortality; prevention and treatment; public health

Definitions of vitamin D that are used in this review:

(a). Hypovitaminosis D = Insufficient 25(OH)D levels

Hypovitaminosis D, also known as vitamin D insufficiency (an ambiguous term), occurs
when there are inadequate (sub-optimal) levels of vitamin D in the circulation to support
its intended physiological and biological functions—defined as serum 25-hydroxyvitamin
D (25(OH)D) concentration of less than 40 ng/mL. Because hypovitaminosis D exacerbates
common disorders and increases vulnerability to other disorders, such as infections, it
cannot be considered within the physiological range.

(b). Severe vitamin D deficiency

Vitamin D deficiency is defined as having significantly low 25(OH)D in the circulation—a
concentration of less than 12 ng/mL. Persons will present with signs and symptoms of
vitamin D deficiency, mainly from the neuromuscular and skeletal systems. It significantly
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worsens most diseases—and increases complications and deaths from cardiovascular
disorders, cancer, infections, and septicemia.

(c). Vitamin D sufficiency:

Achieving vitamin D sufficiency is crucial for overall health and robust bodily func-
tions. A serum 25(OH)D concentration above 50 ng/mL is necessary to overcome prevalent
common disorders and diseases—the physiological range is between 40 and 80 ng/mL.
From the public health point of view, the minimum serum 25(OH)D concentration for the
population (or community vitamin D sufficiency) is recognized as 40 ng/mL.

1. Introduction

Most aspects of human health and well-being and its multifaceted role in disease
prevention and overcoming infections depend on vitamin D’s biological and physiological
functions [1]. Vitamin D is a unique nutrient that is supposed to be obtained through
sunlight exposure, dietary sources, and supplements. It has become an essential component
of public health. Both the synthesized and ingested vitamin D undergo metabolic processes
in the body, ultimately generating its most active form, calcitriol (1,25(OH)2D) [2]. It
regulates the body’s calcium and phosphorus requirements.

In addition to its well-understood functions in bone health, emerging research sug-
gests that vitamin D has established broader implications for overall health and disease
prevention. Vitamin D/calcitriol receptors (VDR = CTR) are present in most tissues and
cells in the body, indicating its numerous physiological processes outside bone metabolism.
The knowledge related to an area that has significantly advanced over the past decade is
the immune system [1]. Vitamin D metabolites profoundly modulate immune function to
facilitate defense against infections [3].

Vitamin D deficiency increases the susceptibility to certain infections, especially tuber-
culosis [4] and respiratory tract infections [5]. Maintaining sufficient levels of 25(OH)D leads
to reduced risks of infectious diseases and downregulating inflammatory responses [6,7].
Vitamin D has also been implicated in preventing chronic diseases such as cardiovascular
disease [8], diabetes [9], cancer [10], and autoimmune disorders [3,11,12].

Research has also shown a strong association between vitamin D deficiency and an
increased risk of developing the conditions mentioned above. However, the mechanism
varies between tissues/disease entities [13,14]. Overall, understanding the physiology
of vitamin D and its implications for disease prevention encompasses its diverse roles
in bone health, immune function, and various physiological processes throughout the
body [6,15]. Ensuring adequate vitamin D status through sunlight exposure, dietary intake,
and supplementation contributes to overall health and well-being.

1.1. The Rationale for This Study

In recent years, many publications have focused on vitamin D, primarily its extra-
skeletal benefits. Given the broadness of the topic, the author searched several research
databases using keywords related to vitamin D, physiology, biology, mechanisms, disease
prevention, and vulnerability. Combining keywords narrowed the number of relevant
manuscripts to a manageable quantity. The search encompassed databases such as PubMed,
Medline, Web of Science, and EMBASE, focusing on clinical studies, randomized controlled
clinical trials (RCTs), prospective clinical studies, and original and review articles. The
author followed a similar methodology of systematic and narrative reviews [16], meticu-
lously selecting pertinent references and justifying their inclusion based on their relevance
to the topic. These were incorporated into the manuscript after a thorough review. The
review aims to present recent findings related to the extracellular functions of vitamin D
concerning the proactive use of vitamin D supplements for disease prevention.

1.2. Importance of Vitamin D for Human Health

Vitamin D deficiency is a widespread problem that affects individuals of all ages and
ethnic backgrounds, yet it remains largely overlooked by global health authorities [17].
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The primary vitamin D source for humans is exposure to ultraviolet B (UVB) rays from
sunlight [18,19]. However, a sizable portion of the population worldwide lacks adequate
exposure, leading to sub-optimal concentrations of 25(OH)D in the circulation (i.e., less than
40 ng/mL). Studies indicate that more than half of the global population has insufficient
vitamin D levels, surpassing the prevalence of iron deficiency as the most common mi-
cronutrient deficiency [19,20]. This deficiency is particularly prevalent among individuals
residing far from the equator, where sunlight is limited, and those living within 500 km of
the equator due to sun avoidance behaviors [21–24].

The consequences of vitamin D deficiency can be profound, impacting various aspects
of health and contributing to the development of numerous health conditions [20]. The
lack of ultraviolet-B (UVB) rays (i.e., higher latitudes—living far from the equator) and the
behavioral issue—avoiding sunlight (within 500 km of the equator due to harsh conditions)
are the two most typical causes for global vitamin D deficiency. Addressing this issue
requires increased awareness, education, and public health initiatives to promote safe sun
exposure, dietary sources of vitamin D, and supplementation where necessary.

1.3. Clinical Signs and Symptoms of Vitamin D Deficiency

Unlike other deficiency statuses, clinical signs and symptoms of vitamin D deficiency
do not manifest until the levels fall below 12 ng/mL [6,25]. Such very low circulatory levels
of vitamin D and 25(OH)D are below the effective threshold for active transportation of
these precursors into renal tubular cells. However, this inefficiency is partly compensated
by increased 1α-hydroxylase activity, attempting to produce a more hormonal form of
calcitriol [2,26,27]. As seen in the case of rickets in children and osteomalacia in adults, when
the generation of calcitriol lags, signs and symptoms of deficiency begin to manifest [28–30].

Symptoms include lethargy, difficulty rising from a seated position or the bed, limited
ability to raise arms above shoulder level (i.e., shoulder-girdle myopathy), muscle and
joint pain, increased falls [25,31], and a tendency to develop hypothermia [32]. Vitamin
D deficiency contributes to generalized weakness and fatigue, impacting overall energy
levels [25]. Common clinical signs and symptoms of vitamin D deficiency include muscle
weakness (and accumulation of osteoid tissues in bone), impaired calcium absorption, bone
pain [33–35], skeletal abnormalities such as deformities (rickets) in children, weakened
bones (osteomalacia, scoliosis) in adults [25,36], and fractures that can be prevented with
vitamin D [35]. Additionally, individuals may experience bone pain, especially in the back,
hips, and legs [25], and are at an increased risk of fractures due to reduced bone density
caused by impaired calcium absorption [35,37].

Studies have also reported a link between low vitamin D levels and symptomatic
depression, impaired wound healing [38], thinning of hair and hair loss [39,40], atrophy
of type II muscle fibers [41,42], hypocalcemic seizures in children [43], disruptions in the
regulation of energy metabolism [44] and the immune system [12], and poor health [37]. It
is worth noting that many of these symptoms are nonspecific and may overlap with other
health conditions such as rheumatic disorders, fibromyalgia, and hypothyroidism [34].
Additionally, the extraskeletal body systems do not exhibit specific symptomatology;
instead, they present with progressively increased risks or worsening of metabolic disorders
(such as diabetes and obesity), cardiovascular and other systemic disorders, and heightened
vulnerability to cancer and infections [45–48].

1.4. Current Recommendations and Vitamin D Status

Inadequate exposure to sunlight and sun avoidance behavior are the two predominant
factors causing vitamin D deficiency worldwide. Inefficient conversion of 7-dehydrocholesterol
into pre-vitamin D and then to vitamin D in the skin can be caused by (i) deficient intake of
dietary vitamin D or not taking supplements, (ii) gastrointestinal issues leading to impair-
ment of vitamin D absorption, (iii) increased catabolism of vitamin D following intakes of
medications that enhance the activity of some cytochrome P450 enzymes, (iv) insufficient
expression or activity of CTR (e.g., due to lack of cofactors) or genetic abnormalities of
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vitamin D receptors, (v) activation failure of vitamin D and its metabolites as in liver cell or
renal tubular cell impairment, and (vi) rare genetic disorders.

Vitamin D deficiency has emerged as a global pandemic affecting individuals across
all age groups and ethnic backgrounds, yet it remains largely overlooked by leading
global health agencies. The human body relies on UVB rays from sunlight to synthesize
vitamin D. However, insufficient exposure has resulted in more than half of the population
having insufficient levels of 25(OH)D [49,50]. The consequences of vitamin D deficiency
can have significant health implications, underscoring the importance of addressing this
issue through increased awareness, education, and public health initiatives. Encouraging
safe sun exposure practices, promoting dietary sources of vitamin D, and considering
supplementation where necessary are crucial steps in combating this pervasive health
concern [19].

Based on published data, the author estimated a global prevalence of vitamin D
deficiency affecting approximately 4.9 billion people sometime during the year [51,52].
Unsurprisingly, older studies using an outdated definition of 20 ng/mL as vitamin D
deficiency by the Institution of Medicine (IoM) [53] estimated the prevalence as over one
billion [54,55]. The signs and symptoms associated with vitamin D deficiency can be
alleviated by ensuring the appropriate dose of vitamin D is taken regularly, at the right
frequency. For musculoskeletal diseases, improvements are observed when serum 25(OH)D
concentrations reach around 20 ng/mL [56], which was the basis for the IoM report [53].
However, metabolic disorders require higher circulatory levels exceeding 40 ng/mL [57,58].
Examples include infections, autoimmunity [15,59], and cancers [60–62], which may require
even levels above 50 ng/mL [6,15,63,64].

1.5. Vitamin D Dose Recommendations

Little vitamin D is present in natural food; thus, the dietary intake is minimal and
cannot be relied upon for the majority [65,66]. In the absence of regular exposure to daily
direct sunlight, casual exposure to the sun is inadequate for raising and sustaining the
concentration of serum 25(OH)D [67,68]. Most governments and their appointed commit-
tees like the Scientific Advisory Committee (SCAN) in the UK, IoM, Food and Nutrition
Board (FNNB), and USPTO in the USA, etc., continue to recommend doses of vitamin D
of between 400 and 1000 IU/day, with 20 ng/mL as the minimum sufficient level. These
low doses fail to raise serum 25(OH)D concentration by more than 6 ng/mL after vitamin
supplementation [6]. This is grossly insufficient for those with vitamin D deficiency [69].
Therefore, such doses consistently fail to raise serum 25(OH)D concentrations above the
minimum therapeutic level recommended above [69].

Raising serum 25(OH)D concentration above 20 ng/mL benefits the musculoskeletal
system but not others [53,70]. Governments and their appointed committees’ recommended
doses of vitamin D are primarily (of less than 1000 IU/day) aimed to prevent rickets in
children and osteomalacia in adults [14,67,71]. However, this does not help any other
body systems or disease conditions. Therefore, it is paramount to use adequate doses of
vitamin D (preferably body-weight-based doses) [49,72] to increase serum 25(OH)D to the
desired concentrations.

For busy healthcare workers, it is difficult to remember the different doses of vitamin
D and serum 25(OH)D concentrations needed for various diseases. Therefore, irrespective
of age and body weight, when laboratory measurements are affordable and available, it is
rational to maintain serum 25(OH)D concentrations above 40 ng/mL [73,74], preferably
above 50 ng/mL—a range between 50 and 80 ng/mL [56,69].

Notably, the administered vitamin D vs. dose–response and serum 25(OH)D concen-
tration is not linear [75–77]. Clinical research published on extra-skeletal disorders over the
past decade is more favorable for having a higher minimum serum 25(OH)D concentration
than 30 ng/mL recommended by the American Endocrine Society [78]. The primary ratio-
nale is that maintaining higher circulatory serum 25(OH)D concentrations leads to better
short-term responses and longer-term clinical outcomes for more diseases [58,75].
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Most scientific societies’ recommendations typically advocate maintaining serum
25(OH)D concentrations above 30 ng/mL [15], which is still insufficient [49,56,73,79,80].
This contrasts with the government’s recommendation of 20 ng/mL as adequate [53,81]. In
contrast, higher vitamin D intakes, and serum 25(OH)D concentrations are necessary to
overcome conditions such as cancer [60–62], autoimmune diseases [12,63], and infections to
achieve and sustain serum levels above 50 ng/mL (discussed below) [56]. This highlights
the potential inadequacy of current recommendations, which may be outdated in light of
recent research [15].

A broad search of databases using keywords of vitamin D, clinical studies, and RCTs
illustrated that while most studies have reported significant benefits from vitamin D
supplementation, approximately 15% of clinical publications have inconsistent or negative
results—i.e., lack of beneficial effects. Detailed evaluations revealed that most negative
findings often stem from design flaws [49,56]. This is vivid in those studies funded by
pharmaceutical companies, where vitamin D was administered as a drug intervention
or piggybacked on a pharmaceutical RCT. Notably, most clinical research studies have
focused on using vitamin D as a treatment rather than for disease prevention. Vitamin D’s
primary benefit is that it is a micronutrient, yet its prophylactic use to prevent diseases was
neglected. Therefore, future research should emphasize the preventive aspect of vitamin D
supplementation to harness its health-promoting effects fully.

2. Generation of Vitamin D

The portion of calcitriol synthesized and secreted to the blood from the kidneys acts
as a hormone that regulates calcium and phosphorus metabolism. It plays a crucial role
in muscular skeletal health. It enhances the absorption of calcium and phosphorus from
the intestines, promoting deposition in bones and maintaining bone mineralization [82].
Meanwhile, gross vitamin D deficiency leads to conditions like rickets in children and
osteomalacia in adults, characterized by weakened and brittle bones [35,37,68].

2.1. Synthesis of Vitamin D

While diet contributes some vitamin D3 (cholecalciferol) and D2 (ergocalciferol), the
amount is typically insufficient [83]. Evolutionarily, most human vitamin D requirements
are anticipated to be met through skin synthesis. However, as deliberate sun exposure has
declined, the necessity for increased supplement intake has become unavoidable [2]. Skin
exposure to ultraviolet B spectrum (290–315 nm) (UVB) causes a photolytic conversion of
the 7-dehydrocholesterol (7-DHC) to pre-vitamin D3, which then undergoes a thermally
induced isomerization to form pre-vitamin D [84] (Figure 1).

Most pre-vitamin D3 is synthesized in the epidermis near the dermal capillary bed.
Therefore, the skin surface temperature and its changes are unlikely to impact the formation
rate of vitamin D3 in the skin [85]. The efficiency of this process depends on various
factors, including skin melanin content, UVB exposure (duration, intensity, time of day,
and season), UV-blocking products or clothing use, skin conditions such as scars, and age-
related factors [86]. Figure 1 illustrates the sequence of vitamin D metabolite generation.

In individuals with fair skin, approximately 30–60 min of exposure, with about one-
third of the upper body exposed to direct sunlight (while protecting the eyes and face from
UV/sunlight), between 10:30 A.M. and 1:30 P.M., can yield up to 10,000 IU of vitamin
D [87]. It is important to note that the skin has a built-in feedback mechanism preventing
excessive vitamin D from sun exposure from entering the bloodstream, thereby avoiding
hypervitaminosis D or hypercalcemia [88]. Besides synthesizing vitamin D, sunlight offers
other advantages to human health [88]. However, minimal or no vitamin D synthesis
occurs during early mornings, late afternoons, winter months, indoor sun exposure through
double-glazed glass windows, or when clothing or sunscreen covers the skin [37,71,89,90].
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Figure 1. Illustrates the pathway for the generation of vitamin D3 from 7-dehydrocholesterol
(7-DHC) following exposure to UVB rays. The activation of vitamin D to its metabolites, 25(OH)D
(calcifediol) and 1,25(OH)2D (calcitriol), is highlighted, including its 24-hydroxy, inactive catabolic
metabolites. Critical organs responsible for vitamin D generation/metabolism and the parathyroid
hormone (PTH)-mediated regulation of serum ionized calcium (Ca2+) levels are illustrated. The
typical activation route for skin-derived and oral/dietary vitamin D forming 1,25(OH)2D is depicted.
While 25-hydroxylase activity occurs mainly in the liver, the conversion of vitamin D and 25(OH)D
to 1,25(OH)2D via the 1α-hydroxylase enzyme occurs in renal tubules and peripheral target cells
of vitamin D. The figure also demonstrates the control of serum Ca2+ levels through intestinal ab-
sorption, bone turnover, and PTH-mediated renal handling (+ upregulation and − downregulation)
(Fibroblast growth factor-23 = FGF-23; UVB = Ultraviolet B rays; VDBP = Vitamin D binding protein).

2.2. Vitamin D Supplementation and Its Benefits

Except for sun-exposed mushrooms and fatty fish, food has little vitamin D. Therefore,
the optimal way to obtain vitamin D3 is through daily safe exposure to ultraviolet sun rays.
When direct sun exposure is not feasible, daily or weekly, supplementation can maintain
physiological vitamin D concentrations in the circulation [49,56]. For communities with a
high prevalence of vitamin D deficiency, targeted food fortification is a cost-effective way to
alleviate it [71]. These approaches can ensure an adequate supply of vitamin D3 to maintain
optimal vitamin D levels in the population—mean serum 25(OH)D concentrations above
40 ng/mL [84,91]. In individuals, maintaining levels above 50 ng/mL can bolster immunity,
reduce illnesses and absenteeism, and enhance productivity. Moreover, a robust population
immunity can help limit the spread of pathogenic microbial infections, including viral
epidemics and pandemics such as SARS-CoV-2, consequently reducing hospitalizations
and fatalities [92,93].

Large datasets and emerging evidence strongly support the diverse physiological
functions of vitamin D mediated by calcitriol. These findings indicate that vitamin D should
be utilized as a preventative and adjunct therapy in various common disorders, including
sepsis and COVID-19 infection. Despite this, vitamin D is seldom included in clinical
protocols or guidelines by leading health authorities or government recommendations to
promote public health [20]. Furthermore, recommendations from medical and scientific
societies often lack clarity and are contradictory and outdated [6,94].
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However, public awareness regarding vitamin D and its beneficial effects on the
immune system has increased since the COVID-19 pandemic [95–98]. This can be attributed
partly to the persistent efforts of small groups of scientists despite negative publicity from
pharmaceutical companies and health agencies. Notable examples include the clinical
guidelines provided by the Front-Line COVID-19 Critical Care Alliance and informative
articles on platforms like Substack and websites such as covid19criticalcare.com [99,100].

3. Physiology of Vitamin D

Over the past two decades, numerous non-classical actions of vitamin D beyond the
musculoskeletal system have been documented [20,101,102]. However, peripheral target
cells, like immune cells, rely on maintaining adequate vitamin D and 25(OH)D levels in
circulation via diffusion of the two mentioned precursor molecules. For biological actions
to occur, peripheral target cells must synthesize calcitriol intracellularly, as circulating
calcitriol levels are relatively low (approximately 900-fold less than 25(OH)D) and thus do
not enter these cells [6,56].

In addition, intracellular calcitriol magnesium and other cofactors are utilized during
metabolic activities, immune cell activation, and signaling processes [6,103]. However,
the government-recommended vitamin D of 400 to 800 IU/day is insufficient to main-
tain circulatory levels of D3 and 25(OH)D [56]. The entry of vitamin D3 and 25(OH)D
from the circulation to peripheral target cells, like immune cells needing levels beyond
50 ng/mL [49,104,105], is necessary to maintain a robust immune system [56,63,106]. No
evidence suggests that circulatory calcitriol enters target cells, such as immune cells, as the
levels required are about two orders of magnitude lower for diffusion [49,63,107–109].

3.1. Non-Classical Actions of Calcitriol

Calcitriol engages in various regulatory and physiological homeostatic activities.
Having physiological levels of two precursors of calcitriol ensures the efficient functioning
of immune cells through genomic and autocrine intracrine mechanisms [104–106,110],
thereby reducing the risks of cytokine storms and complications such as acute lung injury
leading to ARDS from SARS-CoV-2 infection [111–115]. Individuals with severe vitamin D
deficiency are particularly susceptible to such complications.

Vitamin D (a vitamin) and 25(OH)D (a metabolite of vitamin D) are not hormones [2,7].
Meanwhile, 25(OH)D hydroxylation produces calcitriol in renal tubular cells, which enter the
circulation; it exhibits hormonal properties in the muscular-skeletal target tissues [15,103].
Both vitamin D and 25(OH)D diffuse from the circulation into other target cells and occur
primarily through a concentration-dependent diffusion [108,109]. These target cells contain
enzymes, 1α-hydroxylase and 25-hydroxylase, responsible for generating calcitriol and
calcitriol (vitamin D) receptors (CTR/VDR) [6].

Vitamin D signaling intracellularly (autocrine/intracrine) is crucial for multiple physi-
ological activities, including stimulating and synthesizing intrinsic defensive compounds
against microorganisms such as cathelicidin [116] and defensins [117], which have crucial
anti-microbial activities [118]. In addition to directly binding to and destroying pathogens,
cathelicidin also acts as a secondary messenger, enhancing vitamin D-mediated reduction
in inflammation during infection [119]. Calcitriol also stabilizes tight junctions of epithelial
cells of the respiratory tract and vascular system. This protects fluid leakage and viral dis-
semination into soft tissues [119,120]. Figure 2 illustrates fundamental differences between
the hormonal and non-hormonal forms of calcitriol and the related generation of calcitriol.
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Figure 2. The essential pathways of acquiring vitamin D in humans are illustrated. The figure
demonstrates key functional differences between the circulatory hormonal form of calcitriol (the
hormonal form) that is generated in renal tubular cells vs. the intracellularly generated calcitriol in
peripheral target cells, such as immune cells (modified from Wimalawansa, SJ., 2023 [7]).

3.2. Activation of Vitamin D/CTR

The steroid receptor CTR is present in nearly all cell types of the human body, especially
in immune cells [121]. When calcitriol binds to the CTR in the cytosol, it forms a heterodimer
with the retinoid-X receptor. This complex then translocates into the nucleus, binding to
DNA [122]. This binding initiates the recruitment of coactivator or corepressor proteins
and transcription factors, ultimately regulating gene expression. This process can influence
the transcription of numerous genes, estimated to be over 1200 [123].

The intracellular generation of calcitriol in target cells (immune cells, colon cells,
breast cells, etc.) is crucial for vitamin D-related physiological functions [124,125]. This
process is essential for autocrine and paracrine functions of vitamin D and its DNA
interactions—genomic actions [126,127]. These intracellularly generated calcitriol gets
metabolized and does not enter the circulation. One exception is the calcitriol synthesized
within overactivated macrophages in granulomatous tissues, such as sarcoidosis and gran-
ulomatous tuberculosis, which can spill over to circulation [128]. This overflow of calcitriol
into the bloodstream could lead to hypercalcemia, although this is uncommon.

3.3. Genetic Influences on Vitamin D/CTR

Genetics plays a role in determining certain aspects of skeletal development and the
potential peak bone mass. However, vitamin D, dietary calcium, physical activity, and
hormonal status also significantly influence and modulate peak bone mass, bone density,
and skeletal mineral content accrual [129,130]. Vitamin D deficiency triggers increased
parathyroid hormone (PTH) secretion, leading to secondary hyperparathyroidism; this is
for maintaining serum ionized calcium concentration [131].

Elevated PTH levels resulting from low dietary calcium or, more commonly, vitamin
D deficiency contribute to heightened bone turnover and gradual loss of bone mineral
content [132], increasing fracture risk [133]. In addition, insufficient circulatory calcitriol
reduces intestinal calcium absorption, while urinary calcium excretion is increased due to
secondary hyperparathyroidism [131,134].
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3.4. Vitamin D, 25(OH)D, and 1,25(OH)2D

Serum 25(OH)D concentration reflects both cutaneous production of vitamin D from
ultraviolet B exposure and dietary intake from food and supplements. While it stands as the
best indicator of vitamin D status, it does not directly reflect the amount of vitamin D stored
in the body, which can vary depending on factors like muscle and fat mass. In epidemiologi-
cal studies and clinical practice, serum 25(OH)D levels have become the primary marker for
assessing vitamin D status. With daily administration of D3, measurement of cholecalciferol
would be better [135], but its availability is limited. However, there is a risk of misclas-
sifying individuals’ vitamin D status due to differences in half-lives—approximately one
day for vitamin D compared to two to three weeks for 25(OH)D [136]. Some researchers
advocate measuring both serum vitamin D and 25(OH)D concentrations in epidemiological
studies, although this approach significantly increases costs [135].

In contrast, with a few hours of circulatory half-life, circulating serum 1,25(OH)2D
concentrations do not reflect vitamin D status or the amount of vitamin D or 25(OH)D
stored in the body and thus should not be used as a measure to assess vitamin D status.
Serum calcitriol concentrations may be lower in individuals with renal failure, due to the
progressive failure of renal cells to convert 25(OH)D to 1,25(OH)2D. Additionally, rare
genetic disorders with abnormalities in the CYP2R1 gene, which is involved in vitamin
D metabolism, can result in a relative deficiency of the 25-hydroxylase enzyme, leading
to low calcitriol levels [137]. These conditions are typically associated with low 25(OH)D
concentrations, hypocalcemia, and secondary hyperparathyroidism. Figure 3 illustrates the
major organs involved in vitamin D metabolism in conjunction with PTH-mediated serum
ionized calcium homeostasis.
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Figure 3. Illustrates the pathways for the synthesis of vitamin D and its activation into 25(OH)D in
the liver and 1,25(OH)2D in the kidneys, as well as the role of parathyroid hormone (PTH) in the
maintenance of ionized calcium (Ca++) in the circulation (7-DHC, 7-dehydrocholesterol).

3.5. Intracellular Synthesis of Vitamin D and Binding to CTR

Vitamin D is crucial in maintaining calcium and phosphate homeostasis [138] and
skeletal mineralization, essential for overall human health [139,140]. There are two primary
isoforms of vitamin D: vitamin D2 and vitamin D3. Vitamin D3, the primary source in
humans, is synthesized in the skin upon exposure to ultraviolet B (UVB) rays. Through
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a series of enzymatic reactions [83], 7-dehydrocholesterol in the skin is converted to pre-
vitamin D, which is then isomerized to form vitamin D [141,142].

Fat-soluble vitamin D binds to vitamin D-binding protein (VDBP) before entering
the bloodstream via the skin capillary system. Once in the bloodstream, it undergoes
25-hydroxylation in the liver via 25-hydroxylase enzymes (from the CYP2R1 gene) [143]
to form 25(OH)D [144], also known as calcifediol. Subsequently, 25(OH)D is further
hydroxylated at the 1α-position by the 1α-hydroxylase enzyme (CYP27B1), predominantly
within renal tubular cells [145,146], forming the hormonal form of vitamin D 1,25(OH)2D
or calcitriol.

However, calcitriol is also synthesized in peripheral target cells, including immune,
colon, breast, and prostate [147]. This local production is influenced by various signals from
several sources, such as cell-surface Toll-like receptors [148,149]. Depending on the tissue
and the signaling received, the genomic interaction of 1,25(OH)2D with its receptor, the
calcitriol/vitamin D receptor (CTR), modulates (enhances or suppresses) the transcription
of over 1200 essential genes [7,150]. In mammals, hepatic P450 cytochrome enzymes
catalyze the formation of calcifediol via 25-hydroxylation and calcitriol via 1α-hydroxylase
in microsomes [151] (Figure 1). The CYP24A1 gene expresses a 24-hydroxylase enzyme
responsible for inactivating vitamin D and its metabolites [152].

Inclusion of other micronutrients, such as magnesium, zinc, and selenium, vitamins
K2, A, and C, resveratrol, and, combined with essential fatty acids, such as omega-3, would
enable the maintenance of a robust immune system [153–156] and health; these are crucial to
overcoming infections [56]. Maintenance of the circulatory 25(OH)D concentrations above
50 ng/mL facilitates the sufficient generation of calcitriol intracellularly in immune cells
(and other peripheral target cells) that enhance the expression of a series of anti-microbial
peptides and neutralizing antibodies and signaling molecules [56]. These steps require
proper concentrations of intracellular calcitriol significantly higher than in circulation.
Calcitriol synthesis requires the availability of its precursors, vitamin D and/or 25(OH)D,
within target cells [49]. This initiates autocrine/intracrine and paracrine signaling, in
addition to multiple genomic mechanisms, enhancing the expression of anti-inflammatory
cytokines from lymphocytes and macrophages and suppressing inflammatory cytokines,
enabling the subduing of inflammation and oxidative stress, and preventing cytokine
storms [97,157].

3.6. Binding of Calcitriol to Its Receptors (CTR)

The binding of calcitriol to the CTR triggers the activation of heterodimerization
between the receptor and the retinoid X receptor (RXR) [145,158]. This heterodimer complex
then translocates into the nucleus, binds to vitamin D response elements, and initiates
modulation and transcription of genes. In addition to this classical genomic pathway,
calcitriol modulates second messenger systems. It affects the host’s and neighboring
cells’ biological functions through non-genomic pathways, such as membrane effects and
autocrine/intracrine and paracrine signaling. Furthermore, calcitriol influences growth
factors, cytokines, and the renin–angiotensin axis [159,160].

The functional calcitriol–CTR–RXR complex binds to the vitamin D response element
in the promoter region of its target genes [145,158]. Subsequent downstream actions recruit
transcription factors, coactivators, or corepressors, thereby regulating mRNA expression
from target genes and modulating their functions. These functions include calcium and
phosphate metabolism, neurotransmission, immunoregulation [1], and hormone secre-
tion in target endocrine cells. For instance, this pathway is responsible for the slower
genomic effects of increasing phase 2 insulin secretion in glucose-stimulated insulin secre-
tory responses [161], thereby linking hypovitaminosis D to relative insulin deficiency. This
example underscores the intricate mechanisms associated with the actions of vitamin D.
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3.7. Vitamin D Is a Crucial Regulator of Calcium Homeostasis

Serum 25(OH)D measurement is crucial for determining an individual’s vitamin D
status. Circulating 25(OH)D serves as the substrate to produce the hormonal form of
calcitriol in renal tubules and calcitriol in extra-renal target tissues, which is essential
for genomic and autocrine/paracrine signaling [49,125]. However, the precise quantities
involved remain unknown [162]. There is no evidence to suggest that this component of
calcitriol synthesizes in peripheral tissue cells and enters circulation [56], except in cases of
overactive macrophages in granulomatous cells [6,163].

Therefore, the hormonal actions of calcitriol are exclusively dependent on renal tubular
cell synthesis. Consequently, impaired renal function can significantly negatively affect the
musculoskeletal system and calcium homeostasis due to the deterioration of renal tubular
cell functions. Therefore, individuals with impaired renal functions must be supplemented
with calcitriol or 1α-vitamin D analogs. The regulation of 1α-hydroxylase in renal cells is
modulated by parathyroid hormone (PTH) but not in peripheral target cells [6]. In contrast,
25(OH)D and 1,25(OH)2D are inactivated through the 24-hydroxylase enzyme expressed
from the CYP24A1 gene.

The coordinated actions of 1,25(OH)2D in conjunction with PTH and fibroblast growth
factor-23 (FGF-23) tightly regulate serum ionized calcium (Ca2+) concentrations and phos-
phate (Pi) homeostasis [143,164,165]. This tight control of serum ionized calcium is crucial
for numerous physiological functions, including enzymatic activities, hormone synthesis
and release from endocrine glands (e.g., PTH and insulin), intestinal calcium absorption,
DNA repair, mitochondrial energy generation, and the promotion of skeletal mineralization
and microarchitectural integrity [165,166]. Fluctuations in ionized calcium in the blood can
have detrimental effects on survival.

3.8. Maintenace of Calcium Homeostasis

Blood calcium homeostasis is maintained through various mechanisms, including
promoting intestinal calcium absorption, calcium mobilization from bones (mediated
by parathyroid hormone and osteoclasts), and calcium conservation by the kidneys.
These biological actions, which involve osteoclasts and osteoblasts, help regulate mineraliza-
tion and bone turnover to stabilize serum-ionized calcium and phosphorus
concentrations [83,146,167]. Additionally, calcitriol and serum ionized calcium levels
rapidly adjust intestinal fractional calcium absorption in local cells. This adjustment also
affects concentrations of calcium-binding proteins like calbindin, reflecting the fine-tuning
actions of 1,25(OH)2D [88,168,169].

Circulating PTH and hormonal calcitriol, directly and indirectly, influence the ex-
pression of genes like CYP2R1, which encodes 25-hydroxylase, and CYP24A1, which
encodes 24-hydroxylase enzyme, to regulate serum ionized calcium levels [6]. Conversely,
ionized calcium levels also impact the synthesis and release of PTH and the activity of
24-hydroxylase [170,171]. Consequently, vitamin D deficiency disrupts calcium homeosta-
sis and phosphate metabolism at various stages. Moreover, chronic hypovitaminosis D can
delay skeletal maturation and calcification, accumulating unmineralized bone tissue known
as osteoid [170,172–176]. Clinically, this presents as rickets in children and osteomalacia in
adults [146,167].

4. Key Physiological Functions of Vitamin D

Vitamin D is crucial in facilitating the intestinal absorption of calcium and phosphorus,
promoting skeletal mineralization, enhancing resistance against bacteria and viruses, mod-
ulating inflammation and the immune system, and controlling cell growth. Over the past
two decades, there has been exponential growth in our understanding of the additional
biological and physiological functions of the vitamin D axis.
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4.1. Tissue-Specific Regulation of CYP27B1

The molecular structures of cloned CYP27B1 are identical in renal and extra-renal
tissues [177,178]. Functionally, the activity of CYP27B1 in target cells regulates processes
such as cell proliferation, differentiation, immune functions, and hormone secretion, but it
is not directly involved in bone mineral metabolism. The latter depends on the endocrine
effects of 1,25(OH)2D. Consequently, the serum concentrations of 25(OH)D required for
bone mineral metabolism are lower. This suggests the essential physiological roles of
extra-renal tissue activation of calcitriol. However, the regulation of CYP27B1 expression
and activity in extra-renal target tissues differs from that of CYP27B1 in the kidney.

One of the most abundant drug-metabolizing P450 cytochrome enzymes, CYP3A4, is
present in the liver. It is constitutively expressed in hepatocytes and small intestines [179]
and is crucial in metabolizing various toxins and pharmaceutical agents [6,180]. Interest-
ingly, 1,25(OH)2D plays a feedback role in enhancing the transcription of CYP3A4 through
a mechanism mediated by the calcitriol receptor (CTR) [181,182].

Serum 25(OH)D concentration necessary to reduce disease risks varies depending
on the tissue or the specific disease [20]. For instance, to resolve conditions like rickets
and osteomalacia, serum 25(OH)D concentrations between 15 and 20 ng/mL are typi-
cally sufficient, as the CTR in skeletal tissues is highly sensitive to activated vitamin D
metabolites [182]. However, for the prevention of cardiovascular diseases, autoimmune
disorders [12,63], and cancer [60–62], and the reduction of all-cause mortality [183,184],
higher concentrations of serum 25(OH)D are generally required [20,183,185].

4.2. Tissue-Specific Thresholds of Vitamin D

Until a few years ago, the clinical importance of circulating vitamin D, 25(OH)D, and
1,25(OH)2D concentrations was underestimated [51]. While calcitriol has the most potent
biological functions, all three metabolites participate in different physiological activities [6].
For example, vitamin D directly stabilizes epithelial and endothelium [56]. Vitamin D and
25(OH)D enter renal cells and all peripheral target cells to form calcitriol [6]. Figure 4.2
illustrates the differences between vitamin D and its two metabolites.
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the bloodstream. With daily supplementation or sun exposure, D3 and 25(OH)D concentrations
remain similar and in equilibrium. Notably, while circulatory concentrations of D3 and 25(OH)D3

are in the nanomolar range, 1,25(OH)2D (calcitriol) is present in picomolar amounts—approximately
900-fold lower (modified from Bickel, D [186] and Wimalawansa, 2022 [49]).

Due to the unfamiliarity with the biology of vitamin D, some study investigators ne-
glected to measure baseline 25(OH)D concentrations before enrolling participants into clini-
cal trials. Consequently, vitamin D-sufficient individuals may inadvertently be included
in study groups [15], representing a significant and recurrent design flaw in randomized
controlled trials (RCTs) [187]. Furthermore, aside from diagnosing hypovitaminosis D, low
serum 25(OH)D could be a marker for poor health and nutritional status [188].

Many studies have reported that elevated circulating 1,25(OH)2D levels or a lower
ratio of 25(OH)D to 1,25(OH)2D serve as predictors of poor health outcomes in individuals
with cardiovascular diseases (CVD) [189,190], particularly regarding vascular calcifica-
tion [191] and heart failure, leading to premature death [13,192,193]. Additionally, circu-
lating 25(OH)D concentrations show an inverse association with the severity of various
disorders, including metabolic syndrome [194,195], immunity [196,197], autoimmune disor-
ders [12,198], the ability to combat infections [95,96,98,199], and the progression of calcified
plaque in coronary arteries [200].

4.3. Other Beneficial Effects of Vitamin D

Vitamin D status during pregnancy is crucial in clinical outcomes, including the risk of
pre-eclampsia [201]. For instance, dysfunctions and abnormalities in vitamin D metabolism
observed in trophoblasts and placental endothelial cells (involving enzymes CYP2R1,
CYP27B1, CYP24A1, and proteins VDBP and CTR have been proposed as significant
pathological factors contributing to pre-eclampsia [201]. Therefore, distinct tissue-specific
expressions and metabolic irregularities of vitamin D are associated with certain human
disorders and conditions.

In addition, various endocrine glands and cells, including pancreatic islets and parathy-
roid cells, also express CYP2B1 [202,203]. The autocrine/intracrine and paracrine effects
(signaling) of 1,25(OH)2D in peripheral target cells present a significant therapeutic oppor-
tunity for developing new drugs to modulate physiological processes related to vitamin D.
However, the success of such therapies hinges on a comprehensive understanding of the
clinically relevant 25(OH)D concentrations needed in different target tissues for optimal
health [204]. Achieving stable serum concentrations of 25(OH)D is essential for long-term
optimal physiological functions.

Another potential explanation for tissue- and organ-specific effects, as well as eth-
nic differences in responses, could be the availability of “free” (unbound) vitamin D. A
study reported similar concentrations of bioavailable, free 25(OH)D in whites and blacks
despite significantly lower concentrations of total 25(OH)D and VDBP in the African Amer-
icans [205]. The authors propose that differences in the prevalence of common genetic
polymorphisms between racial groups may account for this disparity [206].

Concentrations of free 25(OH)D in the circulation and tissue fluids are regulated by
vitamin D binding protein levels. In contrast, in target tissues and cells, such concentrations
are regulated by local autocrine needs and intracellular 1α-hydroxylase activity. Figure 5
summarizes the essential physiological functions of hormonal calcitriol synthesized in renal
tubular cells and non-hormonal calcitriol in peripheral target cells.

The PTH and the FGF23 modulate the renal production of calcitriol–Klotho endocrine
system via the kidneys. Extra-renal synthesis of calcitriol is determined by the concen-
tration of substrate, 25(OH)D, 1α-hydroxylase activity in target tissue cells, and by the
catabolic enzyme 24-hydroxylase. Functional anomalies of vitamin D occur through various
mechanisms, including CTR gene polymorphism and abnormalities of its CYP family of
conversion enzymes.
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4.4. Clinical Consequences of CTR, CYP27B1, and CYP2R1 Mutations

While 25-hydroxylase deficiency can cause rickets, such occurrences are rare [207–209].
Rickets can arise from mutations affecting the CTR gene encoding the 1α,25-dihydroxyvitamin
D receptor, the gene encoding the vitamin D 1α-hydroxylase (CYP27B1; located on 12q13.1),
and a microsomal vitamin D 25-hydroxylase (CYP2R1; located on 11p15.2) [210]. Mutations
in CYP27B1 lead to 1α-hydroxylase deficiency, known as vitamin D-dependent rickets type
1 or hereditary pseudo-vitamin D-deficient rickets, while mutations in CYP2R1 result in
25-hydroxylase deficiency [137,211,212]. Despite the genetic differences, the phenotypic
outcomes remain consistent.

CYP2R1 serves as the primary 25-hydroxylase enzyme in humans. Mutations in
the CYP2R1 gene can result in genetically driven vitamin D deficiency, with inheritance
patterns observed in some cases. Notably, mutations such as L99P and K242N in exon 2 of
the CYP2R1 gene have been documented [209,213]. Such mutations can cause a significant
reduction or complete loss of 25-hydroxylase activity [213], leading to a condition known
as atypical vitamin D-deficient rickets (or vitamin D-dependent rickets type 1B) [213].

4.5. Health Economics of Vitamin D—Costs to Maintain Physiological Serum
25(OH)D Concentrations

Vitamin D is a readily available generic micronutrient that is accessible worldwide
without the need for prescriptions. Among its various forms, D3 stands out as the preferred
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choice for supplementation, as it offers a cost-effective option. In the Western market, D3
supplements are typically priced at less than USD 8 per year’s supply. It can be utilized
as an adjunct therapy in infections and metabolic disorders. For example, when used
in SARS-CoV-2 infection, the cost is about USD 2 per person, compared to over USD
700 with anti-viral agents (https://c19early.org; accessed on 28 March 2024) [100,209,214].
Maintaining optimal circulatory levels of 25(OH)D, above 50 ng/mL, can be achieved
through regular vitamin D supplements (e.g., 70–90 IU/kg body weight for a non-obese
person [49] or through safe sun exposure. This could lead to sunlight potentially reducing
the prevalence and severity of several common chronic diseases and certain acute illnesses
like infections.

On average, addressing vitamin D deficiency incurs a cost of less than 0.1% of the
expenses associated with investigating and treating exacerbating comorbidities and com-
plications linked to vitamin D deficiency, such as those observed in COVID-19 [215]. For
instance, the typical expenses for managing diseases associated with vitamin D deficiency,
including diabetes, obesity, multiple sclerosis, and related complications, range from USD
5000 to USD 18,000 annually [216]. The cost–benefit ratio of prophylactic vitamin D aver-
ages approximately 1:10,000, indicating substantial potential benefits relative to costs.

The cost-effectiveness of addressing vitamin D deficiency enables individuals to enjoy
longer, healthier lives with fewer illnesses and reduced expenses. Consequently, various
entities and individuals with conflicts of interest, philanthropic organizations, prominent
health organizations, and government-appointed committees persistently undermine the
significance of vitamin D. This lack of acknowledgment is unsurprising, given their depen-
dence on funding and benefits from pharmaceutical companies.

4.6. Repeated Supra-Pharmacologic Doses Are Unphysiological and Can Be Harmful

Large fluctuations in serum 25(OH)D concentration, particularly following high-dose
therapy, could negatively affect bodily functions [125]. Supra-pharmacologic doses of
oral vitamin D can lead to high peak serum 25(OH)D concentrations, accompanied by
fluctuations in target tissue and intracellular concentrations. Similar fluctuations may
occur when a large bolus of vitamin D is administered parenterally and cleared from the
circulation within a few weeks [125], resulting in a peak followed by a rapid decline in
serum concentration.

This phenomenon occurs partly due to the rapid absorption of vitamin D after admin-
istering large doses and the relatively shorter half-life of vitamin D compared to 25(OH)D
in the circulation. As a result, there can be fluctuations in the bioavailable intracellular
25(OH)D concentration, as observed within prostatic cells [51,87]. This fluctuation could be
one reason for the reported U-shaped curve observed with vitamin D therapy in prostate
cancer patients.

Infrequent administration of high doses of vitamin D (e.g., 300,000 to 600,000 IU)
administered at 6- to 12-month intervals [217] is not physiological and may lead to adverse
clinical outcomes. Large doses of vitamin D administered biannually or annually [218] are
unphysiological and thus not recommended [219]. One explanation is that higher transient
serum 25(OH)D concentrations obtained with intermittent bolus high doses induce the
24-hydroxylase enzyme [220], causing a rapid decline of active forms in the circulation,
25(OH)D and 1,25(OH)2D concentrations over time [221].

Supra-pharmacologic doses of vitamin D administered at intervals of less than a
month [222–224] could lead to negative clinical outcomes, such as increased falls and
resulting fractures, as demonstrated in some improperly designed clinical trials [217,225].
Therefore, vitamin D supplements should be given at less-than-monthly intervals and
preferably administered daily, especially in RCTs [226].

4.7. Common Adverse Effects Following an Overdose of Vitamin D

Adverse effects following vitamin D overdose are infrequent. Toxicity may occur when
serum 25(OH)D concentration exceeds 150 ng/mL [49,56,227]. Most reported cases were

https://c19early.org
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due to mistaken or inappropriate doses taken for prolonged periods [228–234]. Signs and
symptoms of vitamin D toxicity are primarily related to elevated blood-ionized calcium
levels and hypercalciuria. The former include loss of appetite and weight loss, nausea and
vomiting, constipation, weakness, fatigue, disorientation and mental cloudiness, cardiac
arrhythmia, and possibly increased mortality [231,235].

Hypercalcemia-associated hypercalciuria leads to excessive urination, thirst, dehydra-
tion, and the formation of renal stones. Vitamin D can interact with drugs at high doses,
particularly those that modulate cytochrome P450-3A4 (CYP3A4) [230,232]. Additionally,
vitamin D can interfere with anti-convulsant and statin drugs, thiazide diuretics, verapamil,
and digitalis agents [6].

4.8. Sustained Serum 25(OH)D Concentrations Are Necessary for Optimum Outcomes

Preventing vitamin D deficiency-associated diseases requires achieving and sustaining
adequate serum 25(OH)D concentrations [236,237]. Moreover, obtaining clinical benefits
necessitates different serum 25(OH)D concentrations for different diseases [20,90,238],
including cancer [239] and type 2 diabetes mellitus [240,241], as well as reducing the
risk of all-cause mortality [238,242,243]. It is necessary to sustain circulatory 25(OH)D
concentrations above 40 ng/mL to mitigate the risks and severity of certain extra-skeletal
disorders [20,73,244–247].

Much of the data supporting these findings are derived from ecological and observa-
tional studies. However, mounting evidence from recent RCTs report that elevated serum
25(OH)D concentrations are associated with increased health benefits [248]. Nevertheless,
there is a lack of well-designed RCTs on vitamin D-deficient subjects, with vitamin D as
a primary intervention to test specified diseases and vitamin D status, and that rely on
serum 25(OH)D concentrations believed to be needed for the reduction of the risk of a
specific disease. Endocrine functions and interactions with various diseases and disorders
are illustrated in Figure 6.
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maintain circulatory ionized calcium concentrations, representing vitamin D’s fundamental en-
docrine function (Up arrow = up-regulated (increased activity); Down arrow = down-regulated
(reduced functions)).

4.9. Example Conditions Requiring Higher Serum 25(OH)D Concentrations

As with other physiological approaches, vitamin D supplements aim to achieve opti-
mal serum 25(OH)D concentrations to maximize benefits while minimizing or avoiding
adverse effects [20]. For most musculoskeletal disorders, including bone mineralization,
a serum concentration above 20 ng/mL seems adequate [53,249]. In contrast, the current
data support maintaining serum 25(OH)D concentrations between 40 and 80 ng/mL as
optimal for most other disorders [20,83,90,238]. There are exceptions that certain conditions
would improve by maintaining a higher serum 25(OH)D concentration [6].

Examples of these include infection [49,56,105], septicemia [250], and SARS-CoV-2 [93],
which require maintenance of serum 25(OH)D concentrations above 50 ng/mL. In addition,
sleep disturbances, chronic fatigue, post-COVID syndromes (with similar fundamentals),
and chronic pain are managed better by maintaining serum 25(OH)D concentration above
50 ng/mL [106,251–254]. Metabolic disorders like diabetes [255,256], obesity [257], and
osteoporosis, as well as autoimmune disorders such as multiple sclerosis [258], rheumatoid
arthritis [259], and psoriasis [260], and certain types of cancers [243,248,261–263] as well as
reduced all-cause mortality [183] require the maintenance of serum 25(OH)D concentrations
above 60 ng/mL.

4.10. How Much Vitamin D Intake Is Necessary?

Even with a daily administration of 5000 IU/day of vitamin D3 in a vitamin D-
deficient non-obese (~70 kg) adult, it could take from weeks to several months to raise
serum 25(OH)D concentrations to therapeutic levels [264] and restoring robust immune
functions. Doses below 3000 IU/day are unlikely to achieve the necessary therapeutic
levels of serum 25(OH)D concentrations, even after one year, in those with vitamin D
deficiency [6].

Even daily administration of a D3 dose of 5000 IU/day takes several months to increase
serum 25(OH)D concentrations to the therapeutic levels in vitamin D-deficient persons
to restore robust immune functions. Doses of less than 4000 IU/day in 70 kg adults with
vitamin D deficiency would not raise serum 25(OH)D concentrations to therapeutic levels,
even in the longer term. Likewise, although a bolus or upfront loading dose of 300,000 IU
takes three to four days to raise serum 25(OH)D concentrations, it cannot maintain 25(OH)D
levels for more than three months, and while the counter-regulatory effects, such as large
boluses, are known to be effective for at least three months, such large bolus doses alone
are unlikely to be effective in treating acute situations such as severe COVID-19 illness.

In addition to its role in adaptive immunity, hypovitaminosis D weakens the gener-
ation of neutralizing antibodies, impairs cytotoxic immune cell function, diminishes the
effectiveness of memory cells and macrophages, and reduces immune responses following
vaccination. Individuals with compromised immune systems often have severe chronic
vitamin D deficiency and are particularly vulnerable to adverse effects from SARS-CoV-2
infection or immunization. This susceptibility may result in autoimmune reactions [12,63],
systemic hyper-inflammation, and pathological oxidative stress, leading to severe compli-
cations and mortality. The high prevalence of hypovitaminosis D among older individuals
contributed significantly to the pandemic’s impact in 2020, with COVID-19 disproportion-
ately affecting those with severe vitamin D deficiency [52,216].

The recommendation of sub-optimal (standard-outdated) vitamin D doses for ev-
eryone, irrespective of their body weight (including obese individuals) and other factors
affecting their serum 25(OH)D concentrations or the lack of serum 25(OH)D-based calcu-
lation of appropriate doses for individuals [49,56], has resulted in the administration of
pediatric doses of vitamin D to adults, without benefiting the recipients. This manuscript
also illustrates examples and circumstances where the efficacy and clinical necessity of
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rapidly increasing serum 25(OH)D levels (such as in emergencies like sepsis, SARS-CoV-2
infection, in ICU settings, etc.) and target serum 25(OH)D concentration required to address
underlying illnesses such as infection or cancer are demonstrated.

4.11. Doses of Vitamin D Needed to Boost Serum 25(OH)D Concentration

The required vitamin D doses vary depending on the individual’s vitamin D status
and whether the condition is acute or chronic. The latter is based on serum 25(O)H)D
concentrations and/or the body weight (or body mass index–fat mass) [56,72]. The specific
calculations have been published [49].

4.11.1. Vitamin D Requirements for Chronic Conditions

In a person with vitamin D deficiency, the body-weight-based doses mentioned in
Section 4.5 could take from weeks to months to raise serum 25(OH)D concentrations to the
desired therapeutic levels [6]. In these situations, as described below, it is helpful to give an
upfront loading dose (a bolus dose) to increase serum 25(OH)D concentrations within a
few days instead of months [49,265].

Chronic long-term maintenance of circulatory 25(OH)D concentrations is crucial for the
intracellular generation of calcitriol D3 [108,266,267]. If the serum 25(OH)D concentration
is too low or the person has conditions requiring higher daily doses (unless presented with
taking higher doses), they would benefit from one-time administration of high doses of
oral vitamin D (a stat dose or split over a few days using 50,000 IU capsules, taken after a
meal to facilitate absorption) to replenish vitamin D stores in the body [6,268,269]. When
using high doses of D3, it is important to prevent triggering upregulation of 24-hydroxylase
and downregulating intracellular signaling [6,108,270,271].

Fixed higher doses of vitamin D replacement, in the form of 50,000 IU D3 capsules,
are widely available and economical for clinical use; they are also standardized and have
satisfactory gastrointestinal absorption when taken after eating. The 50,000 IU capsules
(60,000 IU in India) are consumed as a single dose or in divided doses to achieve doses
ranging from 100,000 to 400,000 IU [6]. For most people (with an average weight of
70 kg), administering vitamin D requires a dose of 200,000 IU (increase or decrease based on
body weight). This approach suits non-urgent, outpatient, and community setups to boost
serum 25(OH)D concentrations in those with vitamin D deficiency. They are also useful
in emergencies when serum 25(OH)D concentrations are not known [49,56]. Evidence
supports the efficacy of high-dose vitamin D supplementation in raising serum 25(OH)D
levels within a few days [6,64,272–277].

While a bolus or upfront loading dose like 300,000 IU can raise serum 25(OH)D
concentrations within three to four days, it will not sustain therapeutic levels beyond three
months. Furthermore, the counter-regulatory effects triggered by such large bolus doses
could reduce the level faster, thus, with a shorter period of effective levels, if repeated
higher doses are administered [278–280], making them even less effective in treating acute
conditions such as severe COVID-19 illness [6]. Thus, it is important to continue daily or
weekly doses of vitamin D after a bolus dose.

4.11.2. Rapidly Increasing Serum 25(OH)D to Boost the Immune System in a Day

In emergencies like COVID-19, sepsis/infection, and other acute illnesses, it is vital to
immediately increase the circulating D3 and/or 25(OH)D concentrations [49,125] to diffuse
into peripheral target tissues for intracellular generation of calcitriol [49,281,282].

From generation in the skin or ingestion (Figure 1), vitamin D3 and D2 undergo
25-hydroxylation in the liver to form 25(OH)D (calcifediol), typically taking about 3–4 days.
In contrast, calcifediol is already 25-hydroxylated and bypasses the liver, becoming avail-
able in circulation within four hours of administration [283]. This rapid availability offers
several benefits, including rapidly boosting the immune system and enhancing other pro-
tective bodily functions within a day. As a result, calcifediol proves particularly valuable
in medical emergencies such as COVID-19, sepsis, and acute conditions like Kawasaki
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disease, multisystem inflammatory syndrome, acute respiratory distress syndrome (ARDS),
burns, and vitamin D deficiency during pregnancy.

The recommended oral dose of calcifediol is 0.014 mg/kg body weight [49]. With
a single dose of calcifediol, it is advisable to administer a loading dose of vitamin D3
concurrently with or within the first week of calcifediol administration, which would allow
a longer duration of raised serum 25(OH)D [56]. As with other regimens, it is essential to
prescribe an appropriate daily or weekly dose of vitamin D to maintain serum 25(OH)D
concentrations within the therapeutic range.

5. Discussion

The benefits of vitamin D extend beyond its well-established roles in calcium and
phosphate homeostasis and the prevention and treatment of conditions such as rickets,
osteomalacia, and bone loss. Based on recent data, vitamin D deficiency is defined by serum
25(OH)D concentrations below 40 ng/mL, a threshold below which various disorders
may develop or worsen. The optimal physiological range is between 40 and 80 ng/mL,
effective against 99.7% of these disorders. Concentrations below 40 ng/mL are associated
with the worsening of many extra-skeletal conditions, including higher risks of falls,
fractures, metabolic disorders, cardiovascular diseases, cancers, and increased all-cause
mortality [183]. This occurs even in healthy individuals, highlighting the crucial role
of vitamin D in public health and disease prevention [183]. The optimal functioning of
vitamin D in genomic, endocrine, paracrine, and autocrine systems is essential for numerous
physiological processes that keep people healthy.

Based on recent data, vitamin D deficiency is defined by serum 25(OH)D concentra-
tions below 40 ng/mL, below which certain disorders are initiated and worsened. The
physiological (effective) range is between 40 and 80 ng/mL, effective against 99.7% of
the disorders [6]. Concentrations below are associated with several extra-skeletal disor-
ders and conditions like higher risk of falls, fractures, various illnesses, and increased
all-cause mortality, even in healthy individuals [183], illustrating its crucial role in disease
prevention—Public Health. The optimal functioning of the vitamin D endocrine, paracrine,
and autocrine systems is crucial for numerous physiological processes. Furthermore, the
beneficial effects of vitamin D extend beyond its established roles in calcium and phosphate
homeostasis, as well as the prevention and treatment of conditions like rickets, osteomalacia,
and bone loss.

Vitamin D adequacy can be accurately assessed only by measuring serum 25(OH)D
levels; concentrations of 1,25(OH)2D do not reliably indicate vitamin D status. Recent data
from a variety of studies support a decreased incidence of non-skeletal disorders, such as
hypertension [255], diabetes [256,284], multiple sclerosis [258], rheumatoid arthritis [259],
osteoporosis [285,286], certain types of cancers [243,261,263], all-cause mortality [183,184],
and infections when serum 25(OH)D levels are maintained above 50 ng/mL [243,255,256,
261,263,284,287–289]. However, it is worth noting that despite the presence of physiologic
concentrations of calcitriol, increased risks of illnesses and reduced longevity can still occur,
suggesting the involvement of other factors in optimal health. However, it is essential to
acknowledge that not all researchers agree on the reported multiple non-classical benefits
of vitamin D [287–289].

Implementing a public health strategy to raise the mean population serum 25(OH)D
concentration above 30 ng/mL would incur costs less than 0.01% of the expenses as-
sociated with investigating and managing diseases like diabetes. However, the mere
existence of policies is insufficient; these policies must be accompanied by effective mea-
sures to ensure individuals reach the target vitamin D status. This includes recommenda-
tions for safe sun exposure, food fortification strategies, and vitamin D supplementation
guidelines [14,19,290–292]. Adhering to practical public health guidelines makes eliminat-
ing vitamin D deficiency cost-effectively feasible.

The typical daily dose of vitamin D for a non-obese 70 kg adult ranges between 4000
and 7000 IU/day, or 50,000 IU once or twice a month, based on the target blood levels and
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the body weight. These dosages enable approximately 97% of individuals to maintain their
serum 25(OH)D concentrations above 40 ng/mL [83,90]. Given the biology of vitamin D
and the need to maintain a steady state of D3 or 25(OH)D in the circulation [125], daily
administration of vitamin D3 is preferred to infrequent administration as a preventative
measure. In cases where adequate sunlight exposure is lacking, most individuals may need
a daily oral intake of vitamin D supplement ranging from 5000 to 7000 IU/day for the
maintenance of circulatory 25(OH)D concentrations above 50 ng/mL (125 nmol/L) to have
a meaningful positive impact on health. Sustaining stable serum 25(OH)D concentration
over the long term is essential for reducing disease incidence and all-cause mortality.
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