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Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or in
direct targets of its activities. This review summarizes current knowledge on the regulation of ion channels from 
plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a 
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Mitochondria 
Mitochondrial ion channels 

naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and 
proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 
1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion 
channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, 
describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of 
the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion 
channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the 
comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed 
using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It 
was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical 
properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic 
pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and 
mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the tran
scriptomic data using bioinformatics.   

1. Introduction 

An active form of vitamin D3 (1,25(OH)2D3), is a naturally occurring 
hormone with pleiotropic activities and the key regulator of mineral 
homeostasis. In addition to the long-known important role in regulating 
the level of calcium in the body, 1,25(OH)2D3 is implicated in the 
modulation of cell differentiation, and proliferation and also in the 
prevention of cancer (Slominski et al., 2020b); (Slominski et al., 2017); 
(Slominski et al., 2020a); (Chen et al., 2020); (Muñoz and Grant, 2022). 
The major stable circulating form of vitamin D3 in the blood is 25(OH) 
D3. Vitamin D3 is naturally produced from 7-dehydrocholesterol (7DHC) 
in the skin, in a nonenzymatic reaction driven by the ultraviolet B (UVB) 
fraction of sunlight (Holick, 2020). For its activation, it requires hy
droxylation at the C-25 position (carbon number 25) by cytochrome 
P450 family 2 subfamily R member 1 (Cyp2R1) in the liver. Then the 
active form of vitamin D3 is produced in the kidney via hydroxylation in 
the C-1 (carbon number 1) by cytochrome P450 Family 27 subfamily B 
member 1 (CYP27B1) (Żmijewski, 2022). However, 25(OH)D3 and 1,25 
(OH)2D3 also can be produced locally in the skin keratinocytes. 1,25 
(OH)2D3 exerts steroid-like effects by directly interaction with hetero
dimers composed of nuclear vitamin D receptor (VDR) and retinoid-X- 
receptor (RXR), thereby affecting the expression of many genes (Koll 
et al., 2023). The binding of 1,25(OH)2D3 to the VDR: RXR complex or 
VDR homodimer to the vitamin D response element (VDRE) could 
repress or enhance the transcription of many genes through modifica
tion of the target gene promoter activity (Żmijewski, 2022) (Zmijewski 
and Carlsberg 2020). VDR-independent non-genomic vitamin D3 sig
nalling mainly occurs via membrane-bound proteins, such as protein 
disulfide isomerase family A member 3 (PDIA3), also known as endo
plasmic reticulum resident protein 57 (ERp57) and membrane- 
associated rapid response to steroid (1,25D3-MARRS) (Gaucci et al., 
2016). The existence of alternative receptors for vitamin D3 derivatives 
is worth emphasizing. For example, the tachysterol hydroxyderivatives 
were found to regulate aryl hydrocarbon receptor (AhR), liver X receptor 
(LXR), or PPARgamma receptor (Slominski et al., 2022). Retinoic acid- 
related orphan receptors (RORs) activity were shown to be modulate 
by the 20-hydroxyvitamin D3 and 20,23-dihydroxyvitamin D3 (Slo
minski et al., 2014). The LXR might be also regualted by the derivatives 
of lumisterol and vitamin D3 (Slominski et al., 2021) while AhR by the 
20,23-dihydroxyvitamin D3 (Slominski et al., 2018). 

Alternatively, 1,25(OH)2D3 can act in a non-genomic way by regu
lating plasma membrane ion channels (Long et al., 2021). In addition to 
the nuclear and plasma membrane effects of 1,25(OH)2D3/VDR, 
recently a new mitochondria regulatory mechanism of VDR has been 
suggested. The active form of vitamin D3 is also strongly linked with 
mitochondria. First, key enzymes for vitamin D3 metabolism, such as 
cytochrome P450 subfamily members A, B, and R, are located in the 
mitochondria. Secondly, VDR is translocated into the mitochondria of 
some cell types (Silvagno et al., 2013). It seems that the interaction of 
this pluripotent secosteroid with mitochondria is complex and vitamin 

D3 and its metabolites have a significant direct or indirect impact on 
mitochondria. Here we will focus on the effect of the active form of 
vitamin D3 on ion channels, mitochondrial biogenesis, and 
bioenergetics. 

The concept of how 1,25(OH)2D3 can regulate ion channels is based 
on the classic long-time dependent action of the ligated VDR receptor in 
the nucleus and the fast non-genomic action of 1,25(OH)2D3 or ligated 
VDR in the plasma membrane and cytoplasm (Fig. 1A). In a non- 
classical, non-genomic way, 1,25(OH)2D3 after forming a complex 
with the cytoplasmatic or membrane form of VDR, can influence kinases 
and phosphatases that regulate the gating properties of ion channels. 
Another possibility is to change the properties of the lipid bilayer in 
which the channels are located. Such membrane changes (fluidity), 
affect conductivity and the probability of channel openings. Because 
vitamin D3 is metabolized to many intermediate products (Tuckey et al., 
2019), the impact of these metabolites on ion channels should also be 
considered. The last possible regulation of ion channels is by direct 
binding to the channel protein, independent of the VDR (Fig. 1A, B). 

2. Genomic action of the active form of vitamin D3 on ion 
channels 

Activation of the classic genomic pathway of response to 1,25 
(OH)2D3 results in time-dependent modulation of expression of the 
genes under control of VDR: RXRA responding elements (JASPAR matrix 
MA0074.1; also called DR3-type) in their promoters and regulatory se
quences. However, there is a very large group of genes with only VDRE 
motive, thus presumably their expression depends on VDR homodimer 
alone (JASPAR matrix MA0693.2). Moreover, at early time points of the 
genome’s response to 1,25(OH)2D3, an increase in the expression of 
genes encoding transcription factors and chromatin modifiers is 
observed. Such observations indicate that there is a so-called genomic 
response hierarchy (Warwick et al., 2021), based on primary targeted 
genes, which is followed by secondary or even ternary responses acti
vated by transcription factors and modifiers initially activated by 1,25 
(OH)2D3. The genomic effect of 1,25(OH)2D3 on ion channels has not 
been investigated in detail so far. Based on the transcriptomic data of our 
research group and published by others (only data collected for a similar 
1,25(OH)2D3 concentration and incubation time were included), we 
extracted genes encoding channel proteins with differential expression 
under the influence of 1,25(OH)2D3 (Fig. 2A). So far, transcriptomic 
studies using 1,25(OH)2D3 have been carried out on colonic organoids 
(Li et al., 2021), normal keratinocytes (Slominski et al., 2018), squa
mous carcinoma cells (Olszewska et al., 2024b), human monocytic cells 
(THP-1) (Warwick et al., 2021), peripheral blood mononuclear cells 
(Fernandez et al., 2022), breast cancer cell line (MCF-7) (Murray et al., 
2017), asthmatic bronchial epithelial cells (Boutaoui et al., 2019), 
human breast cancer tissue (Sheng et al., 2016), colorectal cancer cells 
(Guo et al., 2023), airway smooth muscle cells (Himes et al., 2015), 
immortalized human oral keratinocytes (Menzel et al., 2019). 
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Depending on the cell type, the ratio of up-and down-regulated genes 
encoding channel proteins was different (Fig. 2A). However, our anal
ysis revealed commonly regulated genes including transient receptor 
potential cation channel subfamily V (gene: TRPV) channels, two-pore 
domain potassium channels (gene: KCNK), calcium-regulated potas
sium channels (genes: KCNN and KCNMA), or chloride intracellular 
channels (genes: CLIC). 

The best-known channels regulated by 1,25(OH)2D3 belong to the 
TRPV channels class (TRPV5, TRPV6) that act as signal transducers by 
altering membrane potential or intracellular calcium (Long et al., 2021). 
TRPV5 is expressed mainly in the kidney and TRPV6 is expressed in a 
range of epithelial tissues such as the intestine, kidney, placenta, 
epididymis, and exocrine glands such as the pancreas, prostate, salivary, 
sweat, and mammary glands (Khattar et al., 2022). These channels play 
a special role in carcinogenesis by affecting proliferation, differentiation 
(Marini et al., 2023), and metastasis of the cells (Bai et al., 2023). In 

renal cell carcinoma, the expression of the TRPV5 gene was decreased in 
comparison to normal renal tissue, and the expression of TRPV5 is 
strongly dependent on the intake of vitamin D3. VDR knockdown in
creases TRPV5 expression and VDR overexpression decreases TRPV5 
expression in such cells, and this suggests that VDR is involved in the 
development and progression of renal carcinoma via regulating the 
transcription of TRPV5 (Chen et al., 2018). Moreover, the human TRPV5 
promoter contains several consensus VDREs (Van Cromphaut et al., 
2001). The TRPV6 channels are mainly presented in the intestinal 
epithelial cell membranes and are responsible for 1,25(OH)2D3-regu
lated calcium entry into the cell and epithelial-mesenchymal transition 
(Kärki et al., 2020). In silico analysis and ChiP assay revealed five pu
tative VDR elements in promoter sequences encoding TRPV6 channels 
and mutagenesis of three of them abrogated response to 1,25(OH)2D3 
(Meyer et al., 2006). Additionally, studies on the hypercalciuric stone- 
forming (GHS) rat model demonstrated that VDR binds to three 

Fig. 1. Proposed mechanism of action of active form of vitamin D3 on ion channels from plasma membranes and mitochondria. (A) Different genomic and 
non-genomic ways of regulation of ion channels by 1,25(OH)2D3. (B) In genomic or non-genomic action, non-hydroxylated vitamin D3 and 1,25(OH)2D3 can enter the 
cell directly through the plasma membrane (1) or can be imported via receptor-mediated endocytosis by the protein megalin/cubilin complexes (LRP2/CUBN) in 
caveolin 1 (Cav-1)-rich membranes (2). In mitochondria non-hydroxylated vitamin D3 can be metabolized into 1,25(OH)2D3 (3). 1,25(OH)2D3 binds vitamin D 
receptor (VDR) in cytoplasm (4) or near plasma membranes (5). In genomic action 1,25(OH)2D3 as a complex with VDR or additionally retinoid X receptor alpha 
(RXRA) co-receptor is transported to the nucleus and impacts the expression level of genes encoding ion channels (6). Translated ion channel proteins can be im
ported into the mitochondrial membranes (7) or plasma membranes (8). In non-genomic action 1,25(OH)2D3-VDR complex can impact ion channels via a kinases- 
dependent manner (9) or via protein disulfide isomerase family member 3 (PDIA3)-dependent manner (10). VDR receptor can also be transported to the mito
chondria influencing mtDNA (11) or bioenergetics (12). According to one concept 1,25(OH)2D3 can directly regulate ion channels in the plasma membrane (13) or 
mitochondria (14) or may affect the properties of the membrane and thus indirectly affect the activity of channels (15). The last of the non-genomic indirect ways of 
regulation is the effect on channels via vitamin D metabolites (16). Abbreviations: CYP1B1 cytochrome P450 family 1 subfamily B member 1; CYP24A1 cytochrome 
P450 family 24 subfamily A member 1; CYP27A1 cytochrome P450 family 27 subfamilies A member 1; CYP27B1 cytochrome P450 Family 27 Subfamily B Member 1; 
LRP2/CUBN megalin/cubilin; VDR vitamin D receptor; RXRA retinoid X receptor alpha; CAV1 caveolin-1; vitD met. vitamin D metabolites. 
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enhancers in the Trpv6 promoter followed by histone acetylation in the 
same regions (Guo et al., 2022). 

Our detailed analyses of transcriptional data revealed that majority 
of affected genes by 1,25(OH)2D3 belong to the potassium channel 
family: voltage-activated potassium channels, calcium-activated potas
sium channels, and two-pore domain potassium channels (Fig. 2A). All 
the found genes encoding ion channels were analyzed by us in the 
CiiiDER program (Gearing et al., 2019) for the presence or absence of 
binding sites for VDR: RXRA (Jaspar matrix MA0074.1) or VDR alone 
(Jaspar matrix MA0693.2) in the promoter sequences. The CLCN2 
(chloride voltage-gated channel 2), KCTD14 (potassium channel tetra
merization domain containing 14, that share sequence similarity with 
the cytoplasmic domain of voltage-gated K+ channels), KCNMA1 (large 
conductance calcium-regulated potassium channel), KCNMB4 (potas
sium calcium-activated channel subfamily M regulatory beta subunit 4) 
and TRPV5, TRPV6 genes had the most VDR: RXRA binding sites (100 
kbp upstream and downstream to transcription start site) (Fig. 2B). In a 
case of VDR binding sites, genes KCNMB4, CLIC4 had the most of them. 
Additionally, we performed a similar analysis, but using data from the 
publicly available ChIP-Atlas database (Oki, 2015). Most sites binding 
the VDR were found in sequences occurring in close proximity to 
KCNMA1, KCNMB4, TRPV5, and TRPV6 genes. The lack of binding site 

motifs for both analyzed transcription factors does not mean that a given 
gene is not a target for 1,25(OH)2D3 but may mean that it can belong to 
the second group of the genomic response to 1,25(OH)2D3, the so-called 
indirect genomic targets. If genes encoding channel proteins appear in 
RNAseq or qPCR data and VDR binding sites appear in Chip-seq exper
iments or in silico analyses, it may be suggested that a given gene is 
directly regulated by 1,25(OH)2D3 within 4 h after administration. 

Transcriptomic results described above were also supported by 
qPCR, Chip-seq experiments, and luciferase reporter gene assay (War
wick et al., 2021); (Slominski et al., 2018); (Olszewska et al., 2024b). 
Our transcriptomic data on squamous cell carcinoma treated with 1,25 
(OH)2D3 for 24 h revealed that the majority of deregulated ion channel 
genes belong to the potassium channel family. Fig. 3A shows a heat map 
of genes coding for potassium channels deregulated after incubation 
with 1,25(OH)2D3 for 24 h. Although there were differences between 
individual replicates for some genes, the modulatory effects of 1,25 
(OH)2D3 were confirmed by qPCR (Fig. 3B). The expression level of 
KCNMA1, KCNMA1 STREX (potassium calcium-activated channel sub
family M alpha 1 with stress-axis regulated exon), KCNK9 (two-pore 
domain potassium channel) and KCNJ11 (ATP-sensitive potassium 
channel) in skin squamous cell carcinoma was decreased after treatment 
(Fig. 3B) (primers from: (Olszewska et al., 2022). Interestingly, in 

Fig. 2. Genomic action of the active form of vitamin D3 on genes encoding ion channels based on transcriptomic data from selected publications. (A) 
Differentially expressed ion channel genes after 24 h 1,25(OH)2D3 treatment in different cell models (results from selected RNAseq experiments). Genes encoding 
channels that are also found in mitochondria are written in red. (B) Number of predicted VDR:RXRA binding sites (JASPAR matrix MA0074.1) in the ion channel 
genes by the CiiiDER program (100 kbp upstream of TSS, 100 kbp upstream of Abbreviations: TSS transcription start site. 
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normal keratinocytes (HaCaT) after short stimulation (2–4 h) of 1,25 
(OH)2D3 (100 nM) an increase in the expression of the KCNN1 (small 
conductance calcium-regulated potassium channel member 1) and 
KCNN2 (small conductance calcium-regulated potassium channel 
member 2) was observed. In a case of longer stimulations, the increase in 
expression for the KCNN3 (small conductance calcium-regulated po
tassium channel member 3), KCNMA1, and KCNK9 genes was visible 
(Olszewska et al., 2022). The expression of the KCNMA1 channel coding 
gene in the breast cancer cells treated with 1 µM 1,25(OH)2D3 for 72 h 
was more than 90 % lower than in the control and corresponded with the 
decline in protein level (Khatun et al., 2016). Interestingly, it was pro
posed that such regulation was not only a direct genomic effect but also 
the partial contribution of histone deacetylases (HDACs), whose protein 
level was decreased after 1,25(OH)2D3 treatment (Khatun et al., 2016). 
A similar result was obtained in the case of the KCNH1 (EAG1) gene 
encoding human ether à-go-go-1 a voltage-gated K+ channel. The ERG 
channels were downregulated by 100 nM 1,25(OH)2D3 (24 h 

incubation) in cancer cells from the breast, cervix, prostate, and mam
mary gland resulting in a decrease in EAG1 protein levels at various 
incubation times (Avila et al., 2010). 1,25(OH)2D3 effect on KCNH1 
expression was VDR-dependent and it was suggested that such mRNA 
repression by 1,25(OH)2D3 involves E-box type VDRE which is a func
tional negative vitamin response element in the hEAG1 promoter 
(Cázares-Ordoñez et al., 2015). The ether à-go-go-1 potassium channel 
became a promising therapeutic target due to its association with 
oncogenesis. The use of vitamin D3 analogs in parallel with channel 
inhibitors enhanced the desired anti-cancer effect on two levels −
genomic and non-genomic (García-Quiroz et al., 2014). 

Another gene with VDRE in the promoter sequence is the KCNE4 
encoding voltage-gated potassium channel auxiliary subunit β, respon
sible for the suppression of Kv7 channels. Kv7 channels are regulators of 
vascular tone and increased KCNE4 expression resulted in higher Kv7 
conductance of the channel. Four VDR: RXRA elements were found in 
the human KCNE4 gene, but only one of them (AGTTCAGGGAGTTGA) 

Fig. 3. Genomic action of the active form of vitamin D3 on genes encoding ion channels based on transcriptomic data from squamous carcinoma cell line 
A431. (A) Heatmap of RNA-seq expression data from A431 showing the potassium ion channels genes that were differentially regulated following treatment with 
1,25(OH)2D3 for 24 h. The color of cells represents the Z-score of normalized gene expression values. (B) The expression level of the KCNMA1, KCNMA1 STREX, 
KCNK9, and KCNJ11 genes encoding also mitochondrial potassium channels in A431 cells treated with 1,25(OH)2D3 for 24 h. Data are expressed as mean ± SEM. 
**P < 0.01. Abbreviations: A431 squamous cell carcinoma cells; KCNMA1 potassium calcium-activated channel subfamily M alpha 1; KCNMA1 STREX potassium 
calcium-activated channel subfamily M alpha 1 with stress-axis regulated exon; KCNK9 two-pore domain potassium channels type 9; KCNJ11 potassium inwardly 
rectifying channel subfamily J member 11. 
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was conserved between humans and mice and VDR-VDRE interaction 
was confirmed by 3D-footprint software analyses. Additionally, KCNE4 
expression was increased in Vdr− /− mice, demonstrating that this sub
unit is regulated by VDR (Olivencia et al., 2023), and mice lacking VDR 
did not exhibit pulmonary arterial hypertension. Our current knowledge 
concerning the genomic effects on channels is summarized in Table 1. 

3. Non-genomic action of the active form of vitamin D3 on ion 
channels 

Although the classical 1,25(OH)2D3 − VDR signaling axis explains 
the long-term changes induced by vitamin D3, it still cannot fully explain 
the phenomenon of rapid cell response to this hormone (Zmijewski and 
Carlberg, 2020). The classical axis includes changes in gene transcrip
tion that last several hours (Carlberg, 2022) (Carlberg et al., 2023). In 
contrast, changes observed, for example, in the stimulation of rapid 
transport of calcium ions in muscle cells and intestinal epithelium, 
require only a few minutes (Christakos et al., 2011) (Fleet, 2022). Such 
observations initiated the concept that 1,25(OH)2D3 affects membrane 
proteins, including ion channels in a non-genomic manner, directly or 
indirectly. This concept is supported by three main observations: (1) 
vitamin D3 deficiency induces ionic remodeling in cardiac tissue (Barsan 
et al., 2022), brain (Kasatkina et al., 2020) and bones (Zanello and 
Norman, 2006); (2) VDR itself was detected in the cell membrane of 
many cell lines and colocalized with the plasma membrane proteins (co- 
immunoprecipitation or co-immunofluorescence studies) like caveolin-1 
(CAV1) (Huhtakangas et al., 2004), caveolin-3 (CAV3) (Zhao and 
Simpson, 2010), A Disintegrin And Metalloproteinase Domain 10 
(ADAM10) (Dursun and Gezen-Ak, 2017), Protein Disulfide Isomerase 
Family A Member 3 (PDIA3) (Chen et al., 2013; Khanal and Nemere, 
2007), megalin/cubilin (LRP2/CUBN) (Rowling et al., 2006); amyloid 

precursor protein (APP) (Dursun and Gezen-Ak, 2017); Nicastrin (Dur
sun and Gezen-Ak, 2017); (3) 1,25(OH)2D3 regulate membrane-based 
signaling pathways like Wnt (Tapia et al., 2020) (Yu et al., 2023) 
(Zhang et al., 2023), sonic hedgehog signaling (SHH) (Oak et al., 2020) 
(Moisejenko-Goluboviča et al., 2022), transforming growth factor-β 
(TGFβ) (Lozano-Ros et al., 2023) (Shah et al., 2023), activated plasma 
membrane rapid responses like PDIA3-dependent activation of Phos
pholipase A2 (PLA2) (Larriba et al., 2014) and phosphatidylinositol 3-ki
nase PI3K/Akt/mTOR pathway (Suares et al., 2019); (4) 
electrophysiological techniques indicates that 1,25(OH)2D3 added to the 
patch-clamp measured pipette can influence the conductance of cal
cium, chloride and potassium channels; (5) vitamin D3 can modulate 
lipid composition of the membranes (Payet et al., 2023) (Conte et al., 
2021). 

The first studies indicating the involvement of vitamin D3 in the 
regulation of ion channels concern calcium channels, as 1,25(OH)2D3 
itself is a master regulator of calcium-phosphate homeostasis. It was 
shown that vitamin D3-dependent calcium transport channel proteins in 
the intestine include TRPV channels, or L-type Ca2+ channels (Cav1.3). 
TRPV channels are best described in the context of 1,25(OH)2D3 regu
lation also due to their contribution to cell proliferation (Zhong et al., 
2022) and pain therapy (Szallasi, 2024). In the case of electrophysio
logical experiments, 1,25(OH)2D3 at nanomolar concentrations (100 
nM) acts as a mild agonist of transient receptor potential cation channel 
TRPV1, but at higher concentrations of TRPV1-specific agonist capsa
icin, acts as an inhibitor of the channel in HEK293T cells expressing 
human TRPV1 (Long et al., 2020); (Tripathy and Majhi, 2020). TRPV1- 
vitamin D3 interaction is relevant in the therapy of pathological pain and 
pharmacological or genetic inhibition of TRPV1 prevents the secretion 
of pro-inflammatory cytokines and vitamin D3 supplementation inhibits 
the hyperactive TRPV1 channels (Tripathy and Majhi, 2020). Also, 1,25 

Table 1 
Genomic impact of the active form of vitamin D3 on different ion channels. Abbreviations: CaV2.3 voltage-gated calcium 2.3; Eag1 ether-à-go-go voltage-gated 
potassium channel; HERG human ether-a-go-go-related; K2P3.1 two pore domain potassium ion channel TASK-1; KCa1.1 (BK) large conductance calcium-regulated 
potassium channel; KCa2.1 small-conductance calcium-activated potassium channel 2.1; KCa2.2 small-conductance calcium-activated potassium channel 2.2; KCa2.3 
small-conductance calcium-activated potassium channel 2.3; KCa3.1 intermediate-conductance calcium-activated potassium channel 2.1; Kir3.1 inward rectifier 
potassium channel; KV7 voltage-gated potassium channel; KVLQT1 potassium voltage-gated channel, KQT-like subfamily, member 1; TASK-3 two-pore domain po
tassium channel; WB western-blot.  

Cellular model 1,25(OH)2D3 

concentration 
Channels regulated by 1,25 
(OH)2D3 

Main experimental methods Publications 

mice pulmonary arteries smooth muscle cells (PASMCs) 1 nM KV7 qPCRs 
WB 

(Olivencia et al., 2023) 

human and mouse pancreatic islets 2 nM or 20 nM CaV2.3 glucose-stimulated calcium 
uptake 

(Kjalarsdottir et al., 2019) 

squamous cell carcinoma line (A431) 100 nM KCa2.1 
KCa2.2 
KCa2.3 
KCa3.1 
KCa1.1 TASK-3 

qPCRs (Olszewska et al., 2022) 

9 to 10-week-old male rats  Kir3.1 
HERG 
KVLQT1 

qPCRs 
WB 

(Luo et al., 2022) 

kidney from VDR-null (Vdr(− /− )) mice and wild-type mice 
(Vdr(+/+))C57BL/6J 

15 or 50 nmol/ 
kg 

TRPV5 
TRPV6 

qPCRs (Ishizawa et al., 2018) 

human breast cancer cells (MDA-MB-453) 1 μM KCa1.1 qPCR 
WB 

(Khatun et al., 2016) 

human pulmonary artery smooth muscle cells (PASMCs) 1 μM K2P3.1 qPCR 
WB 

(Callejo et al., 2020) 

hypercalciuric stone-forming rat model (GHS) 200 ng/kg BW TRPV6 ChiP-seq 
qPCR 

(Guo et al., 2022) 

epithelial cells from colorectal adenocarcinoma (Caco2, 
LS180) 

10− 10 to 10− 7 M TRPV6 ChiP-seq 
luciferase assay 
qPCR 

(Guo et al., 2022; Meyer et al., 
2006) 

breast cancer cells 1 × 10− 9 M Eag1 qPCR 
WB 

(García-Becerra et al., 2010) 

human syncytiotrophoblast cells 
breast cancer cell line (MCF7); uterus/cervix cancer cell line 
(SiHa, HeLa); 
prostate cancer cell line (PC-3); 

1 × 10− 7 M Eag1 qPCR 
WB 

(Avila et al., 2010)  

A.M. Olszewska and M.A. Zmijewski                                                                                                                                                                                                       



Mitochondrion 77 (2024) 101891

7

(OH)2D3 at 50–200 nM concentration modulates naïve T-cells through 
direct inhibition of TRPV1 in a VDR-independent manner. Such action is 
important in the regulation of type 1 diabetes risk by dampening naïve 
T-cell activation and inflammatory response (Long et al., 2021). To our 
knowledge, there are no electrophysiological studies to date demon
strating the involvement of vitamin D3 in the regulation of the TRPV6 
channel. In the case of the effect of 1,25(OH)2D3 on the activity of L-type 
voltage-gated channels (L-type VDCC), most studies are based on 45Ca2+

influx measurements, and only one study is based on somatic nucleated 
patch recordings in single-cell resolution (Gooch et al., 2019). In the 
prefrontal cortex neurons, the L-type VDCC channel rapidly responded 
to 0.1 nM 1,25(OH)2D3 by enhancing activity-dependent Ca2+ ΔF/F. 
Authors suggested that vitamin D3 deficiency may produce a transient 
channelopathy-like state, in that the activity of L-type VDCC is altered 
during critical periods of neurodevelopment (Gooch et al., 2019). A 
stimulatory effect of 1,25(OH)2D3 on 45Ca2+ influx which involves the 
activation of L-type VDCC, K+-ATP, K+-Ca2+, and Kv channels was 
shown on isolated rat pancreatic islets model. Such regulation augments 
cytosolic calcium and prevents insulin resistance via coordination of 
insulin secretion (Mendes et al., 2022). In zebrafish intestines, 1,25 
(OH)2D3 was shown to stimulate calcium influx via L-type VDCC chan
nels but not TRPV1 channels. Additionally, 1,25(OH)2D3 inhibits SERCA 
(sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) activation simi
larly to thapsigargin results in maintaining of high level of free Ca2+ in 
the cytosol (Dambrós et al., 2023). 

Several electrophysiological studies indicated a non-genomic influ
ence of 1,25(OH)2D3 on the activity of potassium channels. Using the 
patch-clamp technique, restoration of 1,25(OH)2D3 levels was shown to 
improve TASK-like-current in pulmonary artery smooth muscle cells 
(PASMC). As a result, amelioration of pathophysiological features of 
pulmonary arterial hypertension was observed (Callejo et al., 2021). 
1,25(OH)2D3 (1 nM) also increases outward K+ current in ventricular 
myocytes via Akt signaling, which may contribute to the protective ef
fect of vitamin D3 on the heart (Tamayo et al., 2017) (Tamayo et al., 
2018). Myocytes treated with 1,25(OH)2D3 showed higher values of 
total K+ currents (Itotal) than those treated with vehicle. 1,25(OH)2D3 
increases fast transient outward current and ultrarapid delayed rectifier 
K+ current and such effect was lost in myocytes isolated from VDR- 
knockout mice and myocytes pretreated with Akt inhibition, which 
means that channel regulation requires active VDR receptor and Akt 
kinase. (Tamayo et al., 2018) Interestingly action of 1,25(OH)2D3 on 
these K+ currents did not change action potential duration, and such 
observation was explained by the fact that calcitriol increases L-type 
calcium current and this might counterbalance the effect of increased 
outward K+ currents in calcitriol-treated myocytes. Such L-type calcium 
channels are further examples of channels regulated by 1,25(OH)2D3 in 
an indirect, non-genomic manner, in this case through the active PKA 
kinase (Tamayo et al., 2017). 

Not only vitamin D3 itself but also its metabolites or analogs can 
influence the activity of ion channels. Application of 100 nM 25(OH)D3 
(calcidiol) on HEK293T cells in cell-attached patch-clamp mode 
increased the time spent in the open state, the frequency of single- 
channel opening, and the open probability of the channel (Long et al., 
2020). Application of 100 nM 25(OH)2D3 in a single-channel patch- 
clamp mode, increases the time spent in the open state of the channel 
resulting in a significant increase in open probability. Molecular docking 
studies have shown that 25(OH)2D3 interacts directly with the channel 
protein by binding to the valinoid binding pocket as capsaicin and 
capsazepine and interacting with Y511 and S512 residues (Long et al., 
2020). 

Although our electrophysiological results indicate of a direct effect of 
1,25(OH)2D3 on the channel (Olszewska et al., 2022), we cannot 
completely exclude the effect of 1,25(OH)2D3 on the cell membrane, 
whose changing properties also affect the channel itself. Most of the 
research from the 1980 s was focused on the effects of 1,25(OH)2D3 on 
the physicochemical properties of membranes. It was shown that 

administration of 1,25(OH)2D3 leads to an increase in the de novo syn
thesis of phosphatidylcholine (PC) and the total PC content. It also in
creases the turnover of fatty acids into PC, which increases the content of 
polyunsaturated fatty acids in the PC fraction. Thus, it was postulated 
that 1,25(OH)2D3 regulates membrane fluidity, and increases the cal
cium transport rate through the calcium channel) (Rasmussen et al., 
1982). For example, membrane fluidity measured by fluorescence 
anisotropy of 1,6-diphenyl-1,3,5-hexatriene was shown to be signifi
cantly increased in rat intestinal brush border membranes treated with 
1,25(OH)2D3 (Deliconstantinos et al., 1986). In chondrocytes, 1,25 
(OH)2D3 treatment results in rapid changes in arachidonic acid release, 
its re-incorporation, alterations in membrane fluidity, and Ca2+ reflux 
(Boyan et al., 1999). Other data suggest that 1,25(OH)2D3 specifically 
modulates fatty acids composition in adipose tissue through direct 
regulation of Elovl3, an enzyme that functions in the synthesis of C20 
− C24 saturated and mono-unsaturated long-chain fatty acids (Ji et al., 
2016). According to the literature, all non-genomic effects on channels 
are summarized in Table 2. 

4. Effect of the active form of vitamin D3 on mitochondria 

Many experimental studies indicate a strong link between 1,25 
(OH)2D3 and mitochondria. In the inner mitochondrial membrane, there 
are heme-containing enzymes involved in the metabolism of vitamin D3 
belonging to the cytochrome P450 family, including cytochrome P450 
family 1 subfamily B member 1 (CYP1B1) (Lin et al., 2023), cytochrome 
P450 family 27 subfamilies A member 1 (CYP27A1) (Cali and Russell, 
1991), cytochrome P450 family 27 subfamily B member 1 (CYP27B1) 
(Srikuea et al., 2012), cytochrome P450 family 24 subfamily A member 
1 (CYP24A1) (Annalora et al., 2010), and cytochrome P450 family 11 
subfamily A member 1 (CYP11A1) (Rosal et al., 2022). The last of the 
mentioned cytochromes CYP11A1 initiates a novel pathways of vitamin 
D3 metabolism. The placenta (Slominski et al., 2012), adrenal glands 
(Slominski et al., 2005), and epidermal keratinocytes (Slominski et al., 
2012) (Slominski et al., 2015) have been shown to metabolize vitamin 
D3 via this CYP11A1-mediated pathway that is modified by the activity 
of CYP27B1. Moreover, it is well established that, steroid hormone re
ceptors, like glucocorticoid or estrogenic are present in mitochondria 
and interact with mitochondrial DNA (mtDNA) (Psarra and Sekeris, 
2011, 2008). A few previous studies with the used of (BODIPY)-calcitriol 
suggested the extra-nuclear cytoplasmatic distribution of VDR (Barsony 
et al., 1997). VDR receptors, as steroid receptors, in addition to their 
classic locations: in the nucleus and cytoplasm, have also been found in 
mitochondria of human platelets (Psarra and Sekeris, 2008), megakar
yocytes (Silvagno et al., 2010), keratinocytes (Silvagno et al., 2013), 
fibroblasts (Barsony et al., 1997), primary neurons and SH-SY5Y cells 
(Gezen-Ak et al., 2023) but no in mitochondria from in skeletal muscle 
cells (Ryan et al., 2016) or squamous cell carcinoma mitochondria 
(Olszewska et al., 2024a). The colocalization of VDR and mitochondria 
was also detected by confocal laser scanning microscopy in human 
kidney proximal tubular cells (HK-2) (Chen et al., 2024). The VDR 
overexpression from plasmid followed by 1,25(OH)2D3 treatment for 72 
h was shown to promote mitochondrial localization of VDR (Chen et al., 
2024). Based on studies on human keratinocytes, a model has been 
proposed according to which the VDR does not have an obvious N-ter
minal mitochondrial import sequence, and the receptor is not trans
ported by the translocase of the outer and inner mitochondrial 
membrane (TOM/TIM translocase), but rather by a permeability tran
sition pore (PTP)-dependent pathway (Silvagno et al., 2013). Interest
ingly, VDR does not have an obvious N-terminal mitochondrial import 
sequence, and the receptor is not transported by the translocase of the 
outer and inner mitochondrial membrane (TOM/TIM translocase). 
Thus, the import of VDR by a PTP-dependent pathway was suggested 
based on studies on human keratinocytes (Silvagno et al., 2013). 

Interestingly, it seems that mitochondrial localization of VDR seems 
to be a common feature of proliferating cancer cell lines, rather than 
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differentiated (Consiglio et al., 2014). Nevertheless, the potential role of 
mitochondrial localization of VDR is still under debate. In silico analysis 
showed that two VDRE sites can be located in the displacement loop (D- 
loop) of the mtDNA with high affinity (89 % and 82 % of the maximum 
score) and a total of 40 VDRE sites with low-affinity scores (>60 % of the 
maximum) clustered in a few regions (Gezen-Ak et al., 2023); (Consiglio 
et al., 2014). Recent results based on mtDNA-ChIP assays and the elec
trophoretic mobility shift assay indicate that VDR is significantly asso
ciated with mtDNA D-loop site in several locations and interacts with 
mitochondrial transcription factor A (TFAM) (Demonacos et al., 1996); 
(Gezen-Ak et al., 2023). Other data based on mammalian two-hybrid 
assays, coimmunoprecipitation analyses, and biochemical coactivator 
recruitment assays demonstrated an interaction between VDR and 
peroxisome proliferator-activated receptor gamma coactivator-1alpha 
(PGC-1α) a transcriptional coactivator that plays a role in mitochon
drial biogenesis. PGC-1α augments ligand-dependent VDR transcription 
(Savkur et al., 2005). 

To demonstrate that 1,25(OH)2D3 is involved in the regulation of the 
expression of mitochondrial genes RNAseq datasets published previ
ously from human epidermal keratinocytes neonatal (HEKn), squamous 
cell carcinoma (A431) and ChiP atlas and MitoCarta3.0 was used (Fig. 4. 
A). Among differentially expressed genes (DEGs) (FDR (false discovery 
rate) =<0,05) from A431 cells, 136 mitoDEGs (mitochondrial differ
entially expressed genes) were found in the MitoCarta3.0 database. 
Additionally, it was shown previously that VDR knockout in A431 cells 
completely inhibits the expression of 1,25(OH)2D3-dependent genes 
after 24 h 1,25(OH)2D3 incubation (Olszewska et al., 2024b). Among 

DEGs from HEKn cells, 264 mitoDEGs were found in the MitoCarta3.0 
database. Interestingly, among VDR-regulated genes from the ChiP 
atlas, 85 mitochondrial were found in the MitoCarta3.0 database. This 
combination indicates that indeed vitamin D3 affects mitochondrial 
gene expression, and the common genes in the above list included 
CYP24A1, IDH2 (isocitrate dehydrogenase), PCK2 (phosphoenolpyr
uvate carboxykinase 2), TXNRD1 (thioredoxin reductase 1) and ACOT11 
(acyl-CoA thioesterase 11). Our ontology analyzes using genes from 
MitoCarta 3.0 (marked in red boxes) of the pathway network and gene- 
set enrichment analysis (PANGEA web tool; version 1.1, https://www. 
flyrnai.org/tools/pangea/web/home/7227) showed that the most 
significantly enriched category was “mitochondrion organization” and 
“mitochondrial transport” (Fig. 4B) (supplementary Table 1.). 

Despite ongoing debate on VDR involvement in regulation of 
expression of gene coded by mtDNA, it seems that of VDR-mediated 
modulation of expression of key regulators of biogenesis and mito
chondrial activity is prevailing mechanism of 1,25(OH)2D3 action on 
mitochondria. Treatment of cortical neurons with 1,25(OH)2D3 resulted 
in significantly increased of mRNA levels of respiratory chain proteins: 
mitochondrially encoded NADH:ubiquinone oxidoreductase core sub
unit 3 (MT-ND3), NADH:ubiquinone oxidoreductase core subunit 4 (MT- 
ND4), NADH:ubiquinone oxidoreductase core subunit 5 (MT-ND5), 
mitochondrially encoded cytochrome C oxidase I (MTCO1) and mito
chondrially encoded ATP synthase membrane subunit 8 (MT-ATP8). In 
human macrophages, 1,25(OH)2D3 increases the mRNA level of cyto
chrome c oxidase subunit II (COXII) and mitochondrially encoded ATP 
synthase membrane subunit 8 (MT-ATP6) (Bergandi et al., 2021). The 

Table 2 
Non-genomic impact of the active form of vitamin D3 on different ion channels. Abbreviations: GsMTx4 spider venom peptide; K+-ATP potassium channel 
regulated by ATP; K+-Ca2+ potassium channel regulated by Ca2+; KCa3.1 calciu-regulated intermediate conductance potassium channel; Kv potassium channel 
regulated by voltage; L-type VDCC L-Type Voltage-Dependent Calcium Channel; L-VGCCs L-type voltage-gated calcium ion channels; ORCC outwardly rectifying 
chloride channel; Piezo1 piezo-type mechanosensitive ion channel component 1; SERCA sarcoplasmic/endoplasmic reticulum Ca2+-ATPase; TASK-Like K+ two-pore 
domain potassium channel; TEA tetraethylammonium; TRPC transient receptor potential canonical ion channels; TRPC6 transient receptor potential canonical ion 
channels type 6.  

cellular model 1,25(OH)2D3 concentration/and additional drugs channels regulated by 1,25(OH)2D3 type of electrophysiological 
experiments and other 
experiments 

publications 

isolated rat pancreatic 
islets 

1,25(OH)2D3 1 nM 
TEA 20 nM 
diazoxide 25 µM 
apamine 1 µM 

L-type VDCC 
K+-ATP 
K+-Ca2+

Kv 

45Ca2+ influx (Mendes et al., 
2022) 

HEK293T cells 1,25(OH)2D3 100 nM 
25OHD3 100 nM 
capsaicin 1 µM 

TRPV1 patch-clamp cell-attached, 
whole-cell currents 
in silico modeling and docking of 
25OHD to human TRPV1 

(Long et al., 
2020) 

chronic vitamin D3 

deficiency mice 
TRPC6 antagonist GsMTx4 (2 mg/kg) mechanosensitive cation channel 

transient receptor potential C cation 
channels (TRPC and TRPC6) 

measurement of intraventricular 
pressure 

(Stratford 
et al., 2021) 

ten-week-old male 
C57BL/6J mice 

vitamin D3 group mice (20 mg/kg/d), vitamin D +
Piezo1 agonist, Yoda1 (2.6 mg/kg/d), vitamin D +
Piezo1 inhibitor,GsMTx4 (0.8 mg/kg/d) 

Piezo1 cells co-culture model 
calcium staining 
flow cytometry 

(Liu et al., 
2023) 

pulmonary artery 
smooth muscle cells 
(PASMC) 

rodent standard diet vitamin D3 1500 IU/Kg TASK-Like K+ whole-cell patch-clamp (Callejo et al., 
2021) 

balb/c mice prefrontal 
cortex 

1,25(OH)2D3 0.1 nM 
L-VGCC agonist-Bay K8644 2.5 μM 
cadmium 1 μM 

L-type voltage-gated calcium channels 
(L-VGCCs) 

somatic nucleated patch 
recordings 
calcium imaging 

(Gooch et al., 
2019) 

zebrafish 1,25(OH)2D3 1 nM 
nifedipine 1 μM 
thapsigargin 1 μM 

L-VDCC channels; 
SERCA 

45Ca2+ influx 
histological stainings 

(Dambrós 
et al., 2023) 

mouse preosteoblast 
cells (MC3T3-E1) 

1,25(OH)2D3 100 nM 
TRAM-34 1 μM 
DCEBIO 10 μM 

intermediate-conductance Ca2+- 
activated K+ channels (KCa3.1) 

whole-cell patch-clamp (Kito et al., 
2020) 

thoracic aorta rings from 
BK+/+ or BK− /− mice 

1,25(OH)2D3 500,000 IU/kg body weight 
NS1619 20 μM 
paxilline 10 μM 
BMS191011 10 mg⋅ kg− 1 ⋅d− 1 

large-conductance calcium-activated 
potassium (BK) channel 

whole-cell patch-clamp (Ning et al., 
2022) 

monkey kidney cells 
(COS-1), Sertoli cell 
line (TM4) 

1,25(OH)2D3 1 nM- 
10 nM 
DIDS 200 μM 

outwardly rectifying chloride channel 
(ORCC) 

whole-cell patch-clamp (Menegaz 
et al., 2011)  
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mRNA levels of cytochrome c oxidase subunit IV (COXIV), a subunit of 
the mitochondrial cytochrome c oxidase; CPT1b, a key enzyme of fatty 
acid oxidation; and UCP3, a mitochondrial uncoupling transmembrane 
protein, were also strongly decreased in plantar muscles of vitamin D3- 
depleted rats in comparison with control rats (Salles et al., 2022). 

Many studies indicate the influence of 1,25(OH)2D3 on mitochon
drial respiration and expression level of the oxidative phosphorylation 
(OXPHOS) subunits. Three months of vitamin D-restricted diet in 
C57BL/6 J mice reflected in lowered mitochondrial respiration and 
maximal electron transport chain (ETC) capacity in skeletal muscles 
(Ashcroft et al., 2021). Consequently, it was reported that a treatment of 
human primary muscle cells with 1,25(OH)2D3, at 10 nM concertation, 
for 48 h increased mitochondrial oxygen consumption rate (Ryan et al., 
2016). Enhanced mitochondrial respiratory capacity was also observed 
in human hepatocyte-like stem cells subjected to 1,25(OH)2D3 at 50 nM 
concentration for 4–8 days (Yuan et al., 2021) and C2C12 myotubes 
treated with 1,25(OH)2D3 at 100 nM concentration for 24 h (Schnell 
et al., 2019). Interestingly, studies on transgenic mice with tamoxifen- 
inducible deficiency demonstrated that vitamin D3 supplementation 
improved muscle mass and strength (Salles et al., 2022). Also, mito
chondrial respiration was increased by 1,25(OH)2D3 treatment in tro
phoblasts isolated from obese women (Phillips et al., 2022). 
Interestingly, the effect was specific to 1,25(OH)2D3 but not for vitamin 
D3 analogs. This observation is consistent with the high binding affinity 
of 1,25(OH)2D3 for the VDR compared to the lower affinities of the other 
analogs especially lacking hydroxyls groups (Salles et al., 2022). 

Several studies also point out the involvement of 1,25(OH)2D3 in the 
regulation of mitochondrial fusion/fission machinery. It was shown, 
that vitamin D3 supplementation improved the mitochondrial cristae 
shape in simvastatin-induced myopathy mice model by regulating the 
expression of mitofusin-1/2 (MFN1/2), optic atrophy 1 (OPA1) and 
dynamin-related protein 1 (DRP1) (Ren et al., 2020). An increase in 
OPA1 expression was also observed after vitamin D3 supplementation in 
vitamin D3 deficient mice with statin-induced myopathy (Ren et al., 

2020), as well as in human skeletal muscle cells treated with 1,25 
(OH)2D3 (Ryan et al., 2016). Interestingly, these results oppose the effect 
of 1,25(OH)2D3 on OPA1 in squamous cell carcinoma (Olszewska et al., 
2024a). A decrease in OPA1 and MFN2 expression and an increase in 
FIS1 (mitochondrial fission 1 protein) expression, without changes in 
MFN1 expression, was observed in A431 cells, after 1,25(OH)2D3 
administration (Olszewska et al., 2024a). A similar effect was observed 
in osteosarcoma cells MG-63, where vitamin D3 promoted mitochondrial 
fission, but via deregulation of OPA3 and MFN1 genes (Quigley et al., 
2022). However, recent publications indicate also the involvement of 
non-genomic pathways in the regulation of mitochondrial activity. In 
streptozotocin-induced diabetic rats co-immunoprecipitation (CO-IP) 
analysis performed in renal tissue demonstrated that the anti-VDR 
antibody pulled down both VDR and Mfn2 proteins, but not Mfn1, 
Drp1 or Fis1. In addition in resent studies on muscle cells, mRNA levels 
for the proteins involved in mitochondrial fusion, i.e., MFN1 and MFN2, 
were significantly downregulated in the vitamin D-depleted group while 
gene expression of FIS1, a protein involved in mitochondrial fission, was 
unaffected (Salles et al., 2022). 

5. The action of the active form of vitamin D3 on mitochondrial 
channels 

Multiple ion channels were identified in the mitochondrial mem
branes, and a majority of them belong to the potassium channels family. 
To date, eleven different potassium channels have been identified in the 
inner mitochondrial membrane: (1) small conductance calcium- 
regulated potassium channel (mitoSKCa; encoded by KCNN1-3) (Dolga 
et al., 2013); (2) intermediate conductance calcium-regulated potassium 
channel (mitoIKCa; encoded by KCNN4) (De Marchi et al., 2009); (3) 
large conductance calcium-regulated potassium channel (mitoBKCa; 
encoded by KCNMA1) (Siemen et al., 1999); (4) large conductance po
tassium channel DEC isoform (mitoBKCa-DEC; encoded by KCNMA1) 
(Gałecka et al., 2021); (5) two-pore domain potassium channel 

Fig. 4. The effect of the active form of vitamin D3 on genes encoding mitochondrial proteins. (A) Venn diagram showing the distribution of the differentially 
expressed genes between MitoCarta3.0, A431, HEKn treated with 1,25(OH)2D3 for 24 h and ChiP-Atlas data demonstrating the impact of 1,25(OH)2D3 on genes 
encoding mitochondrial proteins (red frames). (B) The ontology analyses of the genes encoded mitochondrial proteins (red frames) extracted from ChiP Altas data, 
DEGs from A431 and HEKn 24 h 1,25(OH)2D3 treated cells. Abbreviations: A431 squamous cell carcinoma cells; HEKn human epidermal keratinocytes neonatal; 
DEGs differentially expressed genes. 
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(mitoTASK-3; encoded by KCNK9) (Toczyłowska-Mamińska et al., 
2014); (6) ATP-sensitive potassium channel (mitoKATP; encoded by 
KCNJ11, CCDC51) (Bednarczyk et al., 2018); (7) 1.3 voltage-gated po
tassium channel (mitoKv1.3; encoded by KCNA3) (Szabò et al., 2005); 
(8) 1.5 voltage-gated potassium channel (mitoKv1.5; encoded by 
KCNA5) (Leanza et al., 2012); (9) 7.4 voltage-gated potassium channel 
(mitoKv7.4; encoded by KCNQ4) (Testai et al., 2016); (10) mitochon
drial hyperpolarization-activated cyclic nucleotide-gated channel 
(mitoHCN; encoded by HCN1-4) (León-Aparicio et al., 2019); (11) 
mitochondrial sodium-activated potassium channel (mitoSLO2; enco
ded by KCNT2). Among anion-selective channels, in the outer mito
chondrial membranes was discovered chloride intracellular channel 
type 4 (CLIC4; encoded by CLIC4) (Ponnalagu et al., 2016) and voltage- 
dependent anion channel (VDAC; encoded by VDAC1-3) (Najbauer 
et al., 2021). In the inner mitochondrial membrane chloride intracel
lular channel type 5 (CLIC5; encoded by CLIC5) (Ponnalagu and Singh, 
2017) and calcium-activated chloride channel transmembrane protein 
16A (TMEM16A, encoded by ANO1) (Allawzi et al., 2018). In the inner 
mitochondrial membrane was also found mitochondrial calcium uni
porter (MCU; encoded by MCU) (Chaudhuri et al., 2013). Interestingly, 
the expression of the above-mentioned channel proteins was tissue 
specific. 

The proper functioning of mitochondria is related to maintaining the 
potential of the inner mitochondrial membrane (− 180 mV, pH 7.8), 
membrane integrity, ATP production, reactive oxygen species (ROS) 
production, and the storage of calcium ions. There is growing evidence 
that mitochondrial channels play a significant role in mitochondria 
homeostasis and cell-protective strategies. Most importantly, modula
tion of activity these channels showed cytoprotective effects on cardiac 
and nervous tissue after hypoxia, or induction of cell death in cancer 
cells., suggesting potential clinical implications (Szabo and Szewczyk, 
2023); (Wrzosek et al., 2020); (Kulawiak et al., 2021). It was docu
mented that tissue preconditioning with potassium channel modulators 
results in cytoprotection through the regulation of mitochondrial 
channels (Kulawiak et al., 2021); (Su et al., 2021); (Boovarahan and 
Kurian, 2021). Furthermore, the transport of potassium ions into mito
chondria via mitochondrial potassium channels causes changes in the 
volume of the mitochondrial matrix (Dos Santos et al., 2002); (Bed
narczyk et al., 2008); mitochondrial respiration, due to structural 
coupling with the respiratory chain (Bednarczyk et al., 2013); inner 
membrane potential (Debska et al., 2001); rate of generation of reactive 
oxygen species, redox signaling (Kulawiak et al., 2008); and calcium 
influx (Facundo et al., 2006); (Sato et al., 2005). It seems that all these 
changes occur to protect the cell from death (Szewczyk et al., 2009). 

MitoBKCa and mitoKv channels are the best-described channels of the 
inner mitochondrial membrane in the context of cytoprotection (Kampa 
et al., 2022) (Kicinska et al., 2020) (Lukowski et al., 2022) (Kampa et al., 
2021) and cancer therapy (Leanza et al., 2015) (Zuccolini et al., 2022) 
(Dupuy et al., 2023). 

The role of 1,25(OH)2D3 in the regulation of BKCa channel has also 
been studied in the context of vascular calcification in cardiovascular 
disease (Ning et al., 2022), chronic kidney disease (Hanna-Mitchell 
et al., 2016), and breast cancer (Khatun et al., 2016). KCNMA1 genes 
encoding BKCa channels were downregulated in vascular smooth muscle 
cells after induction of calcification in vitro and in vivo and such a result 
was confirmed on protein level and functionally by patch-clamp re
cordings. BKCa channel agonist NS1619 (20 μM) significantly alleviated 
vascular calcification by decreasing calcium content and alkaline 
phosphatase activity, while BKCa channel inhibitor paxilline (10 μM) 
caused the opposite effects. Additionally, BKCa channel activation by 
BMS191011 (10 mg/kg) ameliorates vitamin D3-induced calcification in 
mice (Ning et al., 2022). In breast cancer cells, the expression of BKCa 
channel was markedly higher than in control tissue, while after incu
bation with paxilline (10 μM) viability of cancer cells was significantly 
suppressed. Interestingly down-regulation of the BKCa protein by the 
treatment with VDR agonists was almost completely prevented by the 

treatment with proteasome inhibitor MG132. Thus, the proposed 
mechanism of the VDR agonists includes transcriptional repression of 
the channel gene and degradation of the channel protein (Khatun et al., 
2016). Transcription of the KCNMA1 gene of the BKCa channel and its 
splicing is regulated by several hormones. Some KCNMA1 transcripts 
possess stress-axis regulated exon (STREX) regulated by progesterone 
and estradiol (Zhu et al., 2005). Sex steroid hormones: estrogen, pro
gesterone, or androgen via binding to corresponding receptors regulate 
transcription of BKCa channel auxiliary subunit KCNMB1. Two estrogen 
receptor binding sites were identified in promoter of KCNMB1 and the 
existence of such sites was proved by ChiP assays, site-direct mutagen
esis, and dual-luciferase reporter assay (Wen et al., 2023). It was also 
shown that estradiol and progesterone binds directly to the auxiliary 
beta1 subunit of the plasmalemma BKCa channel, namely with hydro
phobic residues in the second transmembrane domain and activated 
channel in smooth muscle cells and mice myocytes (Granados et al., 
2019) (North et al., 2023). In the case of the mitochondrial BKCa channel 
estradiol effect is quite the same, estradiol increased the open proba
bility of the mitochondrial BKCa channel in U87-MG cells during the first 
minutes after application, and closing the PTP channel, which may be 
protective for the cell, by preventing the cell from apoptosis (Thiede 
et al., 2012). Since much data indicates that sex hormones influence 
BKCa channel activity both genomically and non-genomically, this 
would suggest that vitamin D3 may act similarly. 

As yet, the regulation of the mitochondrial membrane BKCa channel 
by 1,25(OH)2D3 was studied on the human astrocytoma cell line model 
(U87-MG) (Olszewska et al., 2022). Using patch-clamp technique on 
isolated mitochondria, 1,25(OH)2D3 (100–300 nM) was shown to lower 
or increase the probability of opening the mitochondrial BKCa channel 
and the effect was dependent on calcium ions concentration. Under high 
calcium concentration (100 µM) open probability of the channel 
decreased, but in low calcium concentration c (10 µM) effect was the 
opposite. Such experiments were carried out in patch-clamp inside-out 
mode which means that 1,25(OH)2D3 was applied from the mitochon
drial matrix site in the presence and absence of calcium ions. Observed 
changes in open probability of the channel on mitoplasts are quite fast 
(1 min) which provides evidence of direct effects of 1,25(OH)2D3 on 
mitochondrial function excluding involvement of VDR-driven genomic 
pathway. The potential binding site of 1,25(OH)2D3 with the BKCa 
channel was simulated in silico use of the AutoDock program. Interest
ingly, two 1,25(OH)2D3 binding sites (binding energies: − 9.26 kcal/mol 
and − 9.21 kcal/mol) for the Ca2+-bound BKCa channel were detected. 
The predicted binding sites were located in segments S7-S11 of the 
cytoplasmic domain of the Ca2+-bound BKCa channel. On the other 
hand, the global and local ligand docking indicated a large variety of 
low-energy binding sites Ca2+-free BKCa channel, indicating weak 
interaction (Olszewska et al., 2022). 

A structural similarity of vitamin D3 to cholate lithocholic acid has 
been recently speculated (Nehring et al., 2007). that which activates 
BKCa channels makes BKCa channel activation highly probable under the 
influence of vitamin D3 (Dopico and Bukiya, 2014). In the case of the 
widely studied cholesterol, both direct and indirect regulation BKCa 
channels have been described (Granados et al., 2021; Singh et al., 2012; 
Barbera et al., 2019). Cholesterol molecules can directly interact with 
the channel or with the auxiliary subunit of the channel (Singh et al., 
2012) (Bukiya and Dopico, 2021). Comparing the binding sites for 1,25 
(OH)2D3 and cholesterol in the BKCa channel structure, only one com
mon side was found within the cholesterol binding motif (CRAC1), 
including fragment covering amino acids 1010–1018 of the channel 
(Kim et al., 2020) (Olszewska et al., 2022). 

It was postulated that an increase in the activity of the mitoBKCa 
channel in the inner mitochondrial membrane reduces the activity of the 
permeability transition pore (PTP) (Cheng 2008). Consequently, the 
decrease in the activity of the mitoBKCa channel would cause hyperpo
larization of the mitochondrial potential, followed by increased ROS and 
cytochrome release. Thus, the observed reduction of the activity of the 
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mitoBKCa channel after treatment with 1,25(OH)2D3 explains some of its 
anti-cancer properties. 

The patch-clamp results indicated a direct impact of 1,25(OH)2D3 on 
the BKCa channel, however, the structural similarity of vitamin D3 and 
cholesterol suggest also direct interaction of vitamin D with the cell 
membrane. Potential binding of vitamin D3 to the cell membrane may 
change its properties, thus also affecting the activity of the ion channels. 
Most research on the influence of 1,25(OH)2D3 on the physicochemical 
properties of membranes comes from the 1980 s. Administration of 1,25 
(OH)2D3 leads to an increase in the de novo synthesis of phosphatidyl
choline (PC) and an increase in the total PC content. It also increases the 
turnover of fatty acids into PC, which increases the content of poly
unsaturated fatty acids in the PC fraction. 1,25(OH)2D3 regulates PC 
membrane content, increases membrane fluidity, and increases in cal
cium transport rate through the calcium channel regulated by 1,25 
(OH)2D3 (Rasmussen et al., 1982). Membrane fluidity measured by 
fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, was signifi
cantly greater in rat intestinal brush border membranes treated with 
1,25(OH)2D3 (Deliconstantinos et al., 1986). In chondrocytes, 1,25 
(OH)2D3 action results in rapid changes in arachidonic acid release and 
re-incorporation, alterations in membrane fluidity, and Ca2+ ion flux 
(Boyan et al., 1999). Other data suggest that 1,25(OH)2D3 specifically 
modulates fatty acids composition in adipose tissue through direct 
regulation of Elovl3, an enzyme that functions in the synthesis of C20 
− C24 saturated and mono-unsaturated long-chain fatty acids (Ji et al., 
2016). 

In the case of mitochondrial membrane, there are some reports that 
the fluorescence anisotropy in the mitochondria from vitamin D3-treated 
chicks is significantly lower than that from the vitamin D3-deficient 
animals. The fluorescence studies performed in mitochondrial sub
fractions revealed that 25(OH)D3 treatment resulted in a decrease in 
lipid order parameters of the mitochondrial inner membrane (Tolosa De 
Talamoni et al., 1989). 

To sum up, many studies indicate that 1,25(OH)2D3 is involved in the 
regulation of the biological activity of mitochondria in cells, but it is not 
yet clear what mechanisms of action of 1,25(OH)2D3 are behind these 
effects. However it seems, this effect is pleiotropic. In the future, it 
would be interesting to investigate, the factors which are responsible for 
mitochondrial localization of VDR and its physiological consequences. 

6. Conclusions 

In summary, here we review the evidence indicating that mito
chondrial channels represent a new link between 1,25(OH)2D3 and 
mitochondria. In addition to well-established, genomic effects of 1,25 
(OH)2D3, many studies point to non-genomic, direct effects of 1,25 
(OH)2D3 on ion channels. However, there is still limited data concerning 
the effects of the 1,25(OH)2D3 on intracellular ion channels, including 
mitochondria. Electrophysiological studies would be very helpful in this 
aspect. After careful examination of the potential impact of 1,25(OH)2D3 
towards a specific mitochondrial potassium channel, new therapeutic 
perspectives are opening for 1,25(OH)2D3 and its analogs. Moreover, it 
should be emphasized that 1,25(OH)2D3 itself, by increasing the 
expression of genes encoding channel proteins can enhance the thera
peutic effects of classic ion channel modulators. 
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Kärki, T., Rajakylä, E.K., Acheva, A., Tojkander, S., 2020. TRPV6 calcium channel directs 
homeostasis of the mammary epithelial sheets and controls epithelial mesenchymal 
transition. Sci. Rep. 10, 14683. https://doi.org/10.1038/s41598-020-71645-z. 

Kasatkina, L.A., Tarasenko, A.S., Krupko, O.O., Kuchmerovska, T.M., Lisakovska, O.O., 
Trikash, I.O., 2020. Vitamin D deficiency induces the excitation/inhibition brain 

A.M. Olszewska and M.A. Zmijewski                                                                                                                                                                                                       

https://doi.org/10.3390/biom11060795
https://doi.org/10.3390/nu14071354
https://doi.org/10.3390/nu14071354
https://doi.org/10.1016/j.redox.2023.102695
https://doi.org/10.1016/j.redox.2023.102695
https://doi.org/10.1139/bcb-2014-0073
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0115
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0115
https://doi.org/10.1016/j.cellsig.2013.07.020
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0125
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0125
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0125
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0125
https://doi.org/10.1016/j.ejmech.2020.112738
https://doi.org/10.1016/j.redox.2024.103062
https://doi.org/10.1016/j.redox.2024.103062
https://doi.org/10.1016/j.mce.2011.05.038
https://doi.org/10.1016/j.mce.2011.05.038
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0145
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0145
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0145
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0145
https://doi.org/10.3390/ijms22179287
https://doi.org/10.3390/ijms22179287
https://doi.org/10.1016/j.ceca.2009.03.014
https://doi.org/10.1016/s0006-8993(00)03187-5
https://doi.org/10.1016/0006-2952(86)90316-3
https://doi.org/10.1016/0006-2952(86)90316-3
https://doi.org/10.1016/0039-128x(96)00019-0
https://doi.org/10.1074/jbc.M113.453522
https://doi.org/10.1074/jbc.M113.453522
https://doi.org/10.3389/fphys.2014.00312
https://doi.org/10.1152/ajpheart.00034.2002
https://doi.org/10.1016/j.bcp.2023.115774
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0200
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0200
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0200
https://doi.org/10.1016/j.freeradbiomed.2005.08.041
https://doi.org/10.1016/j.jnutbio.2022.109105
https://doi.org/10.1016/j.jnutbio.2022.109105
https://doi.org/10.3390/nu14163351
https://doi.org/10.1038/s41598-021-90465-3
https://doi.org/10.1038/s41598-021-90465-3
https://doi.org/10.1016/j.yexcr.2009.11.008
https://doi.org/10.1016/j.yexcr.2009.11.008
https://doi.org/10.1186/1471-2407-14-745
https://doi.org/10.1038/srep37957
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0240
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0240
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0240
https://doi.org/10.1038/s41398-019-0626-z
https://doi.org/10.1038/s41598-019-45942-1
https://doi.org/10.3389/fphar.2021.687360
https://doi.org/10.1016/j.gendis.2020.09.001
https://doi.org/10.1016/j.jsbmb.2022.106234
https://doi.org/10.1016/j.jsbmb.2022.106234
https://doi.org/10.1002/nau.22809
https://doi.org/10.1002/nau.22809
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0280
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0280
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0280
http://refhub.elsevier.com/S1567-7249(24)00049-7/h0280
https://doi.org/10.1210/me.2004-0116
https://doi.org/10.3390/ijms19071975
https://doi.org/10.3390/ijms19071975
https://doi.org/10.1210/en.2015-1674
https://doi.org/10.1210/en.2015-1674
https://doi.org/10.1016/j.biopha.2021.112039
https://doi.org/10.1016/j.biopha.2021.112039
https://doi.org/10.3390/antiox11101892
https://doi.org/10.1038/s41598-020-71645-z


Mitochondrion 77 (2024) 101891

13

imbalance and the proinflammatory shift. Int. J. Biochem. Cell Biol. 119, 105665 
https://doi.org/10.1016/j.biocel.2019.105665. 

Khanal, R., Nemere, I., 2007. Membrane receptors for vitamin D metabolites. Crit. Rev. 
Eukaryot. Gene Expr. 17, 31–47. https://doi.org/10.1615/critreveukargeneexpr. 
v17.i1.30. 

Khattar, V., Wang, L., Peng, J.B., 2022. Calcium selective channel TRPV6: structure, 
function, and implications in health and disease. Gene 817, 146192. https://doi.org/ 
10.1016/j.gene.2022.146192. 

Khatun, A., Fujimoto, M., Kito, H., Niwa, S., Suzuki, T., and Ohya, S.: Down-Regulation 
of Ca(2+)-Activated K+ Channel K(Ca)1.1 in Human Breast Cancer MDA-MB-453 
Cells Treated with Vitamin D Receptor Agonists, Int J Mol Sci, 17, 10.3390/ 
ijms17122083, 2016. 

Kicinska, A., Kampa, R.P., Daniluk, J., Sek, A., Jarmuszkiewicz, W., Szewczyk, A., 
Bednarczyk, P., 2020. Regulation of the mitochondrial BK(Ca) channel by the citrus 
flavonoid naringenin as a potential means of preventing cell damage. Molecules 25. 
https://doi.org/10.3390/molecules25133010. 

Kim, J.M., Song, K.S., Xu, B., Wang, T., 2020. Role of potassium channels in female 
reproductive system. Obstet Gynecol Sci 63, 565–576. https://doi.org/10.5468/ 
ogs.20064. 

Kito, H., Morihiro, H., Sakakibara, Y., Endo, K., Kajikuri, J., Suzuki, T., Ohya, S., 2020. 
Downregulation of the Ca(2+)-activated K(+) channel K(Ca)3.1 in mouse 
preosteoblast cells treated with vitamin D receptor agonist. Am. J. Physiol. Cell 
Physiol. 319, C345–C358. https://doi.org/10.1152/ajpcell.00587.2019. 

Kjalarsdottir, L., Tersey, S.A., Vishwanath, M., Chuang, J.C., Posner, B.A., Mirmira, R.G., 
Repa, J.J., 2019. 1,25-Dihydroxyvitamin D(3) enhances glucose-stimulated insulin 
secretion in mouse and human islets: a role for transcriptional regulation of voltage- 
gated calcium channels by the vitamin D receptor. J. Steroid Biochem. Mol. Biol. 
185, 17–26. https://doi.org/10.1016/j.jsbmb.2018.07.004. 

Koll, L., Gül, D., Elnouaem, M.I., Raslan, H., Ramadan, O.R., Knauer, S.K., Strieth, S., 
Hagemann, J., Stauber, R.H., Khamis, A., 2023. Exploiting vitamin D receptor and its 
ligands to target squamous cell carcinomas of the head and neck. Int. J. Mol. Sci. 24 
https://doi.org/10.3390/ijms24054675. 

Kulawiak, B., Kudin, A.P., Szewczyk, A., Kunz, W.S., 2008. BK channel openers inhibit 
ROS production of isolated rat brain mitochondria. Exp. Neurol. 212, 543–547. 
https://doi.org/10.1016/j.expneurol.2008.05.004. 

Kulawiak, B., Bednarczyk, P., Szewczyk, A., 2021. Multidimensional regulation of 
cardiac mitochondrial potassium channels. Cells 10. https://doi.org/10.3390/ 
cells10061554. 
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Slominski, A.T., Brożyna, A.A., Zmijewski, M.A., Jóźwicki, W., Jetten, A.M., Mason, R.S., 
Tuckey, R.C., Elmets, C.A., 2017. Vitamin D signaling and melanoma: role of vitamin 
D and its receptors in melanoma progression and management. Lab. Invest. 97, 
706–724. https://doi.org/10.1038/labinvest.2017.3. 

Slominski, A.T., Kim, T.K., Janjetovic, Z., Brożyna, A.A., Żmijewski, M.A., Xu, H., 
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Suares, A., Tapia, C., González-Pardo, V., 2019. VDR agonists down regulate PI3K/Akt/ 
mTOR axis and trigger autophagy in Kaposi’s sarcoma cells. Heliyon 5, e02367. 
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