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ABSTRACT 1 

 2 

BACKGROUND: Recent studies have identified vitamin D deficiency (serum 25-3 

hydroxyvitamin D {25(OH)D} <20 ng/l) as a potentially modifiable risk factor for prosthetic 4 

joint infection (PJI) in arthroplasty. The purpose of this study was to determine whether 5 

implementation of preoperative 25(OH)D repletion is cost effective for reducing PJI following 6 

total knee arthroplasty (TKA). 7 

 

METHODS: A cost estimation predictive model was generated to determine the utility of both 8 

selective and non-selective 25(OH)D repletion in primary TKA to prevent PJI. Input data on the 9 

incidence of 25(OH)D deficiency, relative complication rates, and costs of serum 25(OH)D 10 

repletion and two-stage revision for PJI were derived from previously published literature 11 

identified using systematic review and publicly available data from Medicare reimbursement 12 

schedules. Mean, lower, and upper bounds of one-year cost savings were computed for non-13 

selective and selective repletion relative to no repletion. 14 

 15 

RESULTS: Selective preoperative 25(OH)D screening and repletion was projected to result in 16 

$1,504,857 (range: $215,084-$4,256,388) in cost savings per 10,000 cases. Non-selective 17 

25(OH)D repletion was projected to result in $1,906,077 (range: $616,304-$4,657,608) in cost 18 

savings per 10,000 cases. With univariate adjustment, non-selective repletion is projected to be 19 

cost-effective in scenarios where revision for PJI costs ≥$10,636, incidence of deficiency is 20 

≥1.1%, and when repletion has a relative risk reduction ≥4.2%. 21 
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CONCLUSIONS: This predictive model supports the potential role of 25(OH)D repletion as a 22 

cost-effective mechanism of reducing PJI risk in TKA. Given the low cost of 25(OH)D repletion 23 

relative to serum laboratory testing, non-selective repletion appears to be more cost-effective 24 

than selective repletion. Further prospective investigation to assess this modifiable risk factor is 25 

warranted. 26 

 27 

KEYWORDS: vitamin D; periprosthetic joint infection; arthroplasty; metabolism; cost-28 

effectiveness  29 
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INTRODUCTION 30 

 31 

Total knee arthroplasty (TKA) volume in the United States has increased substantially in recent 32 

years and this trend is expected to continue over the coming decades.[1] In concordance with this 33 

volume growth, there is an expected rise in the number of devastating and costly complications 34 

such as prosthetic joint infection (PJI). While certain risk factors are relatively immutable, there 35 

is considerable interest in identifying modifiable, patient-specific risk factors related to general 36 

health, nutritional, and endocrine status that may be addressed to decrease complication rates in 37 

TKA.[2]  38 

 39 

One such proposed modifiable risk factor that has gained recent attention is vitamin D deficiency 40 

(serum 25(OH)D < 20ng/ml).[3–5] In the larger scientific literature, vitamin D and its 41 

metabolites have known key roles in musculoskeletal health and metabolic processes.[6] More 42 

recent mechanistic and animal models have clearly elucidated the role of vitamin D receptor 43 

(VDR) signaling pathways in both innate and adaptive immunity.[6–9] In arthroplasty, the 44 

appeal of vitamin D as a modifiable perioperative risk factor is attributable to the fact that 45 

inadequacy or deficiency is relatively common and that repletion is quick, reliable, and 46 

inexpensive.[10–12] Indeed, the incidence of 25(OH)D deficiency ranges from anywhere to 10-47 

80% among patients undergoing primary hip and knee arthroplasty, suggesting a large potential 48 

target population.[3,13–15] Furthermore, oral repletion of 25(OH)D to normal can be performed 49 

in standardized protocols ranging from one to eight weeks with few risks and high reliability.[16]  50 

In practice, evidence demonstrating worse clinical outcomes in arthroplasty patients with vitamin 51 

D deficiency has begun to emerge, including documented increases in hospital length of 52 
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stay[17], higher perioperative complication rates[3,18], and worse functional and pain outcome 53 

scores[19–21]. Importantly, Hegde et al. recently demonstrated a two-fold increase in PJI risk 54 

within one year among 25(OH)D-deficient patients (<20 ng/mL).[22] Thus, perioperative 55 

25(OH)D repletion could potentially have tremendous impact on curtailing a costly and 56 

devastating consequence after TKA. 57 

 58 

The purpose of this study was to determine whether implementation of preoperative 25(OH)D 59 

repletion, either selectively, in deficient patients, or non-selectively, in all patients, is cost 60 

effective for reducing PJI following TKA. Toward this end, we developed a cost-effectiveness 61 

model using published literature values for perioperative cost and incidence data obtained from 62 

systematic review and public use sources. Using this model, we also sought to determine critical 63 

values for the incidence of serum 25(OH)D deficiency and the cost of two-stage revision for PJI 64 

above which supplementation would result in population-level cost savings. Given that 25(OH)D 65 

deficiency is relatively common and that repletion is inexpensive, our initial hypothesis was that 66 

preoperative repletion would be cost-effective for PJI prevention using currently available 67 

epidemiologic and cost data. 68 
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METHODS 69 

 70 

To determine cost-effectiveness of serum 25(OH)D repletion in preventing PJI, a stochastic two-71 

state decision tree analysis model was performed with three approaches to preoperative treatment 72 

of patients prior to TKA with respect to serum 25(OH)D status: (1) no 25(OH)D repletion, (2) 73 

selective 25(OH)D repletion, and (3) non-selective 25(OH)D repletion (Figure 1).[23] Vitamin D 74 

deficiency was defined in this study as a serum 25(OH)D <20 ng/mL according to both the 75 

Institute of Medicine and Endocrine Society guidelines.[24] Selective repletion was defined as a 76 

treatment algorithm wherein preoperative laboratory screening is used to determine serum 77 

25(OH)D levels to identify deficient patients. Here, repletion of 25(OH)D levels to normal (>30 78 

ng/ml) with oral vitamin D3 is performed only for those patients who were deficient; post-79 

repletion confirmatory serum 25(OH)D testing is not performed in this algorithm. Non-selective 80 

repletion was defined as treatment of all patients, deficient or sufficient, with vitamin D3 81 

preoperatively without pre- or post-repletion screening for serum 25(OH)D levels.  82 

 83 

Using input cost and epidemiological values, simulated cost differences were computed relative 84 

to a scenario where no preoperative serum 25(OH)D screening or repletion is performed. 85 

Statistical event was defined as PJI requiring two-stage revision arthroplasty within one year. 86 

Given that PJI is an uncommon complication following primary TKA, the stochastic model was 87 

simulated over 10,000 cases for estimation of population-level cost savings for repletion 88 

scenarios. Mean, lower, and upper bounds of one-year cost savings were computed for non-89 

selective and selective repletion relative to the comparison no repletion scenario. Holding other 90 

variables constant, the model was also used to compute inflection point for (1) the cost of two-91 
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stage revision TKA, (2) the population incidence of 25(OH)D deficiency, and (3) the relative risk 92 

reduction above which either selective or non-selective 25(OH)D repletion would result in 93 

population cost savings,. All statistical analysis was performed with R version 3.5.0 (2018, R 94 

Foundation for Statistical Computing). 95 

 96 

Model input data 97 

Using PRISMA guidelines, a systematic review of the literature was performed September 2018 98 

to determine the published incidence of vitamin D deficiency among TKA patients, as well as the 99 

incidence of PJI following TKA in vitamin D deficient (25D <20 ng/mL) and non-deficient (25D 100 

≥20 ng/mL) patients. The following key words were used for the search: “vitamin D”, 101 

“cholecalciferol”, “arthroplasty”, “knee”. After manual review, four studies were identified that 102 

reported the incidence of serum 25(OH)D deficiency in patients undergoing TKA. Only one of 103 

these studies reported the incidence of PJI in serum 25(OH)D deficient and non-deficient 104 

patients[22]; probability data was collected from this study for inclusion in the model. Using 105 

PRISMA guidelines, a second systematic review of the literature was performed September 2018 106 

to determine the costs of primary and two-stage revision TKA for PJI using the key words: 107 

“costs”, “arthroplasty”, “knee”, “revision”, “prosthetic joint infection”, “periprosthetic joint 108 

infection”. After manual review, only one study reported the one-year hospital costs of both 109 

primary and revision TKA for PJI[25]; mean and range cost data was collected from this study 110 

for inclusion in the model. The cost of single serum 25(OH)D assay ($55.72) was determined 111 

from published reimbursement schedules provided by the Centers for Medicare and Medicaid 112 

Services.[26] The repletion method used in this model was 50,000 IU vitamin D/week for a total 113 

of 8 weeks as recommended by the Endocrine Society to achieve repletion (>30 ng/mL).[24] 114 



8 
 

Based on the average cost from 20 pharmacies in the United States ($17.97), the cost of 8-week 115 

repletion was estimated. All costs were adjusted to 2018 U.S. dollars ($) using inflation rates 116 

derived from the Consumer Price Index provided by the U.S. Bureau of Labor Statistics. 117 

 118 

Model assumptions 119 

Stochastic decision tree models have based Markovian and node point assumptions.[27] The 120 

present model has three such primary assumptions that are not derived from the constituent input 121 

data: (1) that the described pharmacologic serum 25(OH)D repletion protocol brings the 122 

infection rate of 25(OH)D-deficient patients to that of those who are replete at baseline, (2) that 123 

non-selective 25(OH)D repletion has no effect on PJI risk patients who are replete at baseline, 124 

and (3) that cost differences for uncomplicated TKA and two-stage revision for PJI are hospital-125 

based only and are comparable after one year. 126 

127 
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RESULTS 128 

 129 

Model input data derived from systematic review and public use data is summarized in Table 1. 130 

Using these risk adjustment data, selective preoperative serum 25(OH)D screening and repletion 131 

was projected to result in $1,504,857 (range: $215,084-$4,256,388) in cost savings per 10,000 132 

primary TKA cases relative to the no repletion scenario. Similarly, non-selective serum 133 

25(OH)D repletion was projected to result in $1,906,077 (range: $616,304-$4,657,608) in cost 134 

savings per 10,000 cases relative to the no repletion scenario.  135 

 136 

Using mean values as model input data, inflection point cutoffs for the cost of two-stage revision 137 

and the incidence of 25(OH)D deficiency were computed (Table 2). At a population level, 138 

selective 25(OH)D repletion is expected to be cost-effective (e.g. cost saving) when the cost of 139 

two-stage revision arthroplasty for treatment of PJI is greater than $34,382 (Figure 2). 140 

Conversely, non-selective 25(OH)D repletion in primary TKA is expected to be cost-effective 141 

when the cost of two-stage revision arthroplasty exceeds $10,636. Holding other variables 142 

constant with mean estimates, selective 25(OH)D repletion is expected to be cost-effective when 143 

the incidence of 25(OH)D deficiency among TKA patients exceeds 3.7%, while non-selective 144 

repletion is expected to be cost-effective when deficiency incidence exceeds 1.1%. Univariate 145 

adjustment also demonstrated that non-selective 25(OH)D repletion would be cost effective 146 

when the relative risk reduction exceeds 4.2% (absolute risk reduction 0.10%); selective 147 

25(OH)D repletion would be similarly cost effective when risk reduction exceeds 13.1% 148 

(absolute risk reduction 0.32%). These differences between repletion algorithms are due to the 149 

fact that cost of serum 25(OH)D assay exceeds cost of treatment. 150 
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DISCUSSION 151 

 152 

Because of its relatively high incidence in the arthroplasty population and ease of preoperative 153 

diagnosis and/or treatment, vitamin D deficiency has great potential as a modifiable risk factor in 154 

arthroplasty. Multiple authors have demonstrated that vitamin D deficiency (serum 25(OH)D 155 

<20 ng/ml) is associated with worse functional outcomes following TKA.[3,20] Others have 156 

demonstrated that persistent 25(OH)D deficiency results in higher rates of postoperative stiffness 157 

and longer hospital stays among arthroplasty patients.[19,20,22] However due to its significant 158 

morbidity, cost, and impact on quality of life, PJI is one of the most devastating TKA 159 

complications and warrants special consideration for risk modification. Studies on the role of 160 

vitamin D balance on PJI have been limited. In the systematic review conducted in this study, 161 

two clinical studies describing PJI risk in 25(OH)D-deficient patients were identified. Traven et 162 

al. found that 90-day PJI rates were significantly higher among patients undergoing revision hip 163 

and knee arthroplasty.[18] While risk modification in revision arthroplasty merits recognition 164 

and conclusions derived from this study may be indirectly extrapolated and applicable, primary 165 

arthroplasty is of greater population-level concern given expected trends. Hegde et al., whose 166 

data was used in our cost-effectiveness model, demonstrated significantly increased risk-adjusted 167 

rates of PJI within one year among patients undergoing primary TKA.[22] That both selective 168 

and non-selective serum 25(OH)D repletion is projected to result in significant population-level 169 

cost savings provides additional justification in concrete financial terms for prospective study. 170 

 171 

The present simplified model suggests that non-selective repletion of serum 25(OH)D (25(OH)D 172 

≥ 30 ng/ml in all TKA patients appears to be more cost-effective than selective screening and 173 
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treatment of 25(OH)D-deficient patients. Indeed, this is due to the low cost of serum 25(OH)D 174 

repletion relative to the cost of serum 25(OH)D assay. We note that this preferability of non-175 

selective repletion is purely reflective of cost and does not consider the potential risks associated 176 

with non-selective vitamin D repletion, as was an assumption in our stochastic model. Vitamin D 177 

repletion is generally safe, with an 8-week course of 50,000 IU/week having very few reported 178 

complications; even higher doses have been reported to be safely used for repletion.[11,24] 179 

Indeed, vitamin D toxicity which occurs almost exclusively from long-term excess dietary 180 

intake, is rare and presents clinically with dehydration, fatigue, gastrointestinal symptoms, 181 

muscle weakness, and metastatic soft tissue calcification.[11] Nevertheless, selective screening 182 

and repletion may be more practical clinically and more amenable to research design and 183 

institutional board review. As an example, in the Vitamin D and Arthroplasty Surgery Outcomes 184 

(VASO) randomized controlled trial underway in the United Kingdom, selective repletion in 185 

25(OH)D-deficient patients is being performed, rather than non-selective treatment of all 186 

patients.[28]  187 

 188 

The projected cost savings from the present study represent a middling estimate based on 189 

presently available and limited incidence and cost data identified by our study design. In our 190 

review, the incidence of serum 25(OH)D deficiency among arthroplasty patients and the cost of 191 

revision arthroplasty for PJI are the two most elusive data points. Our secondary analysis found 192 

that serum 25(OH)D repletion would result in cost savings for arthroplasty populations where 193 

deficiency rates exceed 1.1% and 3.7% for non-selective and selective repletion respectively. 194 

From our review, the incidence of 25(OH)D deficiency ranges from 9.5%-81% in the 195 

arthroplasty population, significantly above these cost inflection points.[3,15,29] While 196 
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speculative, we surmise that this wide range likely reflects global epidemiologic differences 197 

based on geographic location and demographics leading to differences in sun exposure, dietary 198 

supplementation, and genetic predisposition.[30] In the United States, Unnanuntana and 199 

colleagues reported a 9.5% prevalence of 25D deficiency in a cohort of 200 patients undergoing 200 

total hip arthroplasty[31], while Lavernia et al. reported a 30% prevalence.[14] In the United 201 

Kingdom, Jansen and Haddad found a 24% prevalence of vitamin D deficiency among 202 

arthroplasty patients.[3] Even higher rates were reported from other European nations such as 203 

Finland (36%), Greece (81%), and Germany (64%).[15,29,32] As such, our study suggests that 204 

the utility and cost savings of preoperative 25D repletion in reducing PJI would be greater in 205 

regions where vitamin D deficiency is endemic. 206 

 207 

Similarly, this model estimated that non-selective and selective vitamin D3 supplementation 208 

would be cost efficient when the cost of two-stage revision for PJI is greater than $10,636 and 209 

$34,382, respectively. While accurate cost data remains elusive and highly variable in the 210 

orthopedic literature, these figures strongly favor the widespread implantation of vitamin D  211 

supplementation to raise serum 25(OH)D levels into the range of normal. From the case series’ 212 

data used in this model, the lowest in-hospital cost of two-stage revision for PJI was 213 

$44,000.[25] As a surrogate, costs associated with even primary TKA, which is less costly than 214 

revision TKA from an in-hospital and implant related standpoint, are significantly above the 215 

threshold for non-selective repletion.[25,33] Furthermore, considering the high out-of-hospital 216 

costs of care associated with treating PJI (e.g. intravenous antibiotic therapy, laboratory 217 

monitoring, outpatient follow-up), the true cost savings are likely greater than the estimates 218 

provided here.[34] 219 
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Perhaps more importantly, univariate adjustment also found that 25(OH)D repletion would be 220 

cost effective with relative risk reductions that exceed 4.2% and 13.1% for non-selective and 221 

selective repletion, respectively. Given the low incidence of PJI in general, these correspond to 222 

very small reductions in absolute risk (0.1-0.3% as found in this study) that would be necessary 223 

to achieve cost savings. Though this is perhaps the most evasive data point in the literature[22], 224 

these findings that show significant cost savings from very modest reductions in PJI risk with 225 

25(OH)D repletion are a strong justification for further research on this modifiable risk factor. 226 

These baseline values may be helpful in contextualizing the usefulness and implementation of 227 

preoperative 25(OH)D repletion as results from prospective trials emerge. 228 

 229 

It is also important to note that 25(OH)D repletion may have other cost and quality of life 230 

benefits independent of PJI risk that were not included in this model. 25D deficiency has been 231 

associated with postoperative stiffness requiring manipulation under anesthesia, documented 232 

range of motion deficits, prolonged hospital stay, and worse postoperative pain reported 233 

outcomes.[3,18,20–22,35] Due to limited quality data on incidence and costs associated with 234 

these differences, our study could not incorporate these variables into the cost savings model. 235 

However, as literature documenting these differences continues to emerge, attention to these 236 

other outcome disparities among 25(OH)D-deficient and -sufficient arthroplasty patients is 237 

warranted. 238 

 239 

This study provides relevant data on the cost utility of vitamin D3 supplementation but has 240 

limitations that merit discussion. Firstly, such decision tree models have intrinsic assumptions 241 

that were previously delineated. The assumption that pharmacologic 25(OH)D repletion in 242 
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25(OH)D-deficient patients brings PJI risk to baseline levels for patients who are serum 243 

25(OH)D-replete is a fundamental basis of the conclusions and estimates presented here. For 244 

other musculoskeletal and metabolic conditions, serum 25(OH)D repletion is effective in 245 

reversing the health effects associated with 25(OH)D deficiency.[24] However, no clinical study 246 

has explicitly proven this among arthroplasty patients and indeed such a prospective study is 247 

justified in part by the potential cost savings elucidated here. There is preclinical evidence to 248 

support the role of 25(OH)D supplementation in PJI risk reduction.[12] Secondly, the reliability 249 

of the computed cost savings data presented here is dependent on the incidence and cost data 250 

input into the model. Input data on the incidence of 25(OH)D deficiency, relative PJI risk among 251 

25(OH)D-deficient and non-deficient patients, and costs of primary and revision TKA were 252 

elusive from our systematic review and necessarily derived from multiple sources. Thirdly and 253 

for these same reasons, the present study provides analysis from a cost perspective only and 254 

provides no data on quality of life benefits that may be associated with reduced PJI risks. As 255 

such, it is likely that the argument for serum 25(OH)D repletion in arthroplasty would be 256 

strengthened when quality of life conditions measures associated with PJI are considered.[36] 257 

 258 

In conclusion, this predictive model supports the potential role of preoperative restoration of 259 

serum 25(OH)D levels to normal as a cost-effective mechanism of reducing the risk of PJI in 260 

TKA. Given the low cost of vitamin D3 repletion treatment relative to serum 25(OH)D 261 

laboratory testing, non-selective screening appears to be more cost-effective than selective 262 

screening. The cost savings are projected to be greater in populations where the incidence of 263 

25(OH)D deficiency is higher and the cost associated with revision TKA is higher. Further 264 

investigation with a prospective clinical trial to assess this modifiable risk factor is warranted. 265 
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TABLE 1: Incidence and cost data input into the stochastic decision tree model 

 

  



TABLE 2: Stochastic model inflection points with univariate adjustment 

 

 



25(OH)D Deficient TKA patients (*)

TKA Population

25(OH)D Replete TKA patients (*)

Primary TKA ($)

Primary TKA ($)

PJI requiring two-stage revision TKA ($, *)

No PJI (*)

PJI requiring two-stage revision TKA ($, *)

No PJI (*)

Approach 1: No 25(OH)D repletion

25(OH)D Deficient TKA patients (*)

25(OH)D Replete TKA patients (*)

Primary TKA ($)

PJI requiring two-stage revision TKA ($, *)

No PJI (*)

Approach 2: Selective 25(OH)D repletion

TKA Population Serum 25(OH)D screening ($) Selective repletion ($)

Approach 3: Non-selective 25(OH)D repletion

25(OH)D Deficient TKA patients (*)

TKA Population

25(OH)D Replete TKA patients (*)

Primary TKA ($)

PJI requiring two-stage revision TKA ($, *)

No PJI (*)

Non-selective 25(OH)D repletion 

($)

* indicates a model input value for incidence

$ indicates a model input value for cost

Figure 1
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