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ABSTRACT
Ageing is often accompanied by cognitive decline and an increased risk of dementia. Exercise is a powerful tool for slowing 
brain ageing and enhancing cognitive function, as well as alleviating depression, improving sleep, and promoting overall well-
being. The connection between exercise and healthy brain ageing is particularly intriguing, with exercise-induced pathways 
playing key roles. This review explores the link between exercise and brain health, focusing on how skeletal muscle influences 
the brain through muscle–brain crosstalk. We examine the interaction between the brain with well-known myokines, including 
brain-derived neurotrophic factor, macrophage colony-stimulating factor, vascular endothelial growth factor and cathepsin B. 
Neuroinflammation accumulates in the ageing brain and leads to cognitive decline, impaired motor skills and increased suscep-
tibility to neurodegenerative diseases. Finally, we examine the evidence on the effects of exercise on neuronal myelination in the 
central nervous system, a crucial factor in maintaining brain health throughout the lifespan.

1   |   Introduction

1.1   |   Exercise and the Brain

Understanding the mechanisms underlying brain ageing can 
aid in the prevention or even the reversal of progressive cog-
nitive decline, such as in dementia. Dementia encompasses a 
broad group of disorders characterised by a gradual decline 
in cognition, memory loss, language deficits, visuospatial im-
pairment, reduced executive function and alterations in mood 
or behaviour [1, 2]. Approximately 47 million people globally 
are living with dementia-related diseases, a figure projected to 
triple by 2050 [3]. Alzheimer's disease (AD), a prevalent form 
of dementia, affects approximately 6% of the population over 

65 and becomes more common with age [4]. About 30% of AD 
cases can be attributed to modifiable risk factors, including 
hypertension, obesity, diabetes, and physical inactivity  [3]. 
Dementia is associated with changes in the brain vasculature, 
size, morphology and signalling pathways [5]. Age-related at-
rophy of the grey matter [6–9], along with hippocampal shrink-
age, is commonly observed and correlates with progressive 
memory loss [10, 11]. These changes may further contribute 
to a marked decline in learning capacity [12]. At the cellular 
level, synaptic contacts weaken, plasticity decreases [13], and 
hippocampal neurogenesis decreases [14, 15]. Although some 
degree of memory loss is a common consequence of ageing, it 
is not an inevitable outcome. The incidence of dementia in-
creases with age, and cardiovascular diseases (CVD) enhance 
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the risk of cognitive impairment [16–19]. Thus, the prevention 
and treatment of CVD reduce the risk of dementia markedly 
[20]. This connection is demonstrated in mice with cardiac-
selective overexpression of adenylyl cyclase type 8 (TGAC8), 
which exhibit elevated heart rate and contractility, along with 
altered neuroautonomic surveillance. These TGAC8 mice 
demonstrated significantly enhanced locomotor activity, 
evidenced by a 43% increase in distance travelled, a 38% in-
crease in average speed and a 45% reduction in freezing time. 
Moreover, in the hippocampus of these mice, key neurotrans-
mitter receptors are upregulated, indicating higher mental 
activity. More specifically, the brain perceives the increased 
myocardial humoral and functional output as a ‘sustained 
exercise-like’ scenario, prompting a response that activates 
central nervous system (CNS) output controlling locomotion. 
This response highlights how the heart–brain axis can play a 
significant role, with cardiovascular health being important 
for brain ageing [21].

There has been a significant shift in human lifestyle to a sed-
entary life over the past few centuries, contributing to the rise 
of lifestyle-associated diseases [22]. Exercise is essential for 
maintaining both metabolic and mental health [23]. The nu-
merous health benefits of exercise are widely acknowledged, 
including its positive effects on obesity, type 2 diabetes, car-
diovascular diseases, osteoporosis, depression, dementia, sleep 
disturbances, non-alcoholic fatty liver disease and various can-
cers [24–28]. Obesity, particularly in conjunction with social 
stress, impacts hippocampal structure and function, leading to 
reduced cognitive capacity partly due to diminished local pools 
of BDNF [29]. Exercise also reduces metabolic risk factors such 
as insulin resistance, blood lipid levels and chronic inflamma-
tion [30–32]. In contrast, 5 days of bed rest exert negative effects 
on muscle mass, insulin sensitivity, blood lipids and blood pres-
sure [33]. Studies have shown that replacing sitting with stand-
ing during working hours or engaging in short bouts of light or 
moderate intensity walking between prolonged sitting may im-
prove health outcomes, including increased plasma HDL levels 
and improved postprandial glucose and insulin levels [34, 35]. 
Exercise significantly influences human health, beginning in 
foetal development and continuing throughout the lifespan. 
Parental physical activity, both before and during pregnancy, 
influences the health of the mother and offspring [36, 37]. 
Maternal exercise during pregnancy is associated with benefits 
such as improved pregnancy outcomes, including reduced risk 
of macrosomia [38, 39], improved newborn neurobehavioural 
function [40] and cardiac autonomic health [41]. Furthermore, 
children of physically active mothers are more likely to adopt 
active lifestyles, lowering their risk of obesity and metabolic 
syndrome from infancy to adulthood [42]. Exercise during lac-
tation also improves breastmilk composition, offering protec-
tion against obesity and inflammation [43] while supporting 
offspring brain development.

Large observational studies that track participants over time 
show that healthy adults who engage in regular exercise are 
less likely to develop dementia compared to inactive individu-
als [44, 45]. Exercise plays a crucial role in shaping our brain 
size, structure, and improves cognitive abilities [46]. A posi-
tive correlation between aerobic capacity and brain size has 
been reported [47]. Staying physically active throughout ageing 

promotes CNS function and reduces neuroinflammation as well 
as the risk of developing neurodegenerative diseases [48]. A sys-
tematic review indicates that resistance exercise induces signifi-
cant functional alterations in the brain, especially in the frontal 
lobe, promoting enhanced executive functions [49]. Exercise is 
also associated with reduced white matter atrophy and smaller 
volumes of white matter lesions [49]. Additionally, exercise pos-
itively impacts grey matter volume and cognitive function in 
late adulthood [50–53]. Age-related decline in cortical regions 
appears particularly responsive to exercise [54, 55]. An atlas 
of exercise-induced brain activation in mice reveals 255 brain 
regions activated by acute exercise, many of which were previ-
ously unlinked to exercise. Among these, 140 regions respond 
to both wheel and treadmill running, whereas 32 are unique 
to wheel running and 83 to treadmill running. Notably, forced 
treadmill running activates regions associated with stress, fear 
and pain [56].

Reduced blood–brain barrier (BBB) integrity in the human hip-
pocampus is associated with early brain ageing and may be a 
contributing factor to cognitive impairment [57]. This may lead 
to hippocampal atrophy, which is also observed in AD [58, 59]. 
The hippocampus is known for its high degree of plasticity and 
neurogenesis, which provide an opportunity to enhance mem-
ory by improving hippocampal function [60]. For example, aer-
obic exercise has been shown to increase neurogenesis not only 
in the hippocampus but also in the hypothalamus and the sub-
ventricles [61–67]. Located along the lateral walls of the brain 
ventricles, the subventricular zone exhibits neurogenesis by 
producing new neurons in the adult brain [68]. A study of 115 
individuals aged 50–70 years revealed that women who engaged 
in high levels of exercise had significantly larger volumes of the 
dorsolateral prefrontal cortex and temporal lobe compared to 
controls. Similarly, men who participated in high levels of ex-
ercise exhibited larger volumes in the temporal lobe [69]. The 
dorsolateral prefrontal cortex, which is positively influenced by 
exercise, plays a crucial role in cognitive functions like attention 
switching, working memory, rule maintenance, and inhibition 
of inappropriate responses [70] (Figure 1).

In old subjects, regular exercise significantly reduced brain tis-
sue loss as compared to sedentary adults [71], and physically 
active old individuals have higher cognitive ability than seden-
tary old individuals of the same age [72–75]. Physical activity 
includes any energy-expending movement, whereas exercise is 
specifically structured and intentional, aimed at improving fit-
ness. In this review, we use ‘exercise’ to denote purposeful phys-
ical activity.

2   |   Potential Mechanisms of Action

Skeletal muscle has been identified over the past decades as 
a hub for the production, secretion and release of myokines, 
which are defined as secretory proteins. Myokines may function 
as hormones with local effects (autocrine or paracrine) or affect 
distant cells and organs through endocrine effects [76]. Muscles 
may communicate with the brain via extracellular vesicles [77], 
myometabolites such as lactate [78], enzymes like cathepsin B 
and amylase [79], and indirectly via other organs like the liver 
releasing the ketone body beta-hydroxybutyrate [80] (Figure 2).
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All these pathways can modulate cerebral variables such as 
blood flow, metabolic rate, mitochondrial biogenesis, neuro-
genesis, protein folding, oxidative effects, inflammation, and 
cell senescence, thereby affecting mood, sleep, cognition, food 
intake, neurodegeneration, and development of brain-related 
disorders [79].

We will examine selected myokines that may mediate the bene-
ficial effects of exercise on brain health, particularly their roles 
in promoting neuronal myelination and regulating apolipopro-
tein E, a key factor in the accumulation of neuroinflammatory 
amyloid aggregates. Although irisin has been widely studied, we 

will not include it in this review due to ongoing debate about its 
existence as an exercise-induced myokine with beneficial effects 
in humans [83, 84], as well as the availability of prior compre-
hensive reviews on this topic [85].

3   |   Myokines

The fact that plasma transferred from exercised to sedentary 
animals improves cognitive functions supports the presence of 
exercise-induced circulatory factors [86, 87]. Exerkines are sig-
nalling molecules released in response to acute and/or chronic 

FIGURE 1    |    Brain regions associated with exercise. Exercise promotes growth in areas of the subventricles, hypothalamus and dorsolateral pre-
frontal cortex. The hypothalamus plays a crucial role in managing emotions, regulating body temperature, and controlling basic needs like eating 
and sleeping. The hippocampus has a major role in storing and retrieving memories, ‘sending’ memories to appropriate sections of the cerebrum for 
storage and retrieval.

FIGURE 2    |    Skeletal muscle communicates with other organs via nerves and secretory proteins (myokines), metabolites, and extracellular ves-
icles (exosomes) released into the extracellular space and the circulation [79]. Exercise helps preserve the integrity and function of the amygdala-
hippocampal circuit [81]. Exercise-induced improvement in hippocampal function may promote better memory and cognition [73]. Moderate-
intensity exercise may increase prefrontal cortex activity associated with improved working memory in older adults [82].
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exercise, acting via endocrine, paracrine or autocrine pathways. 
These factors are produced by a variety of organs, tissues, and 
cells, including skeletal muscle (myokines), heart (cardiokines), 
liver (hepatokines), white adipose tissue (adipokines), brown 
adipose tissue (baptokines), and neurons (neurokines) [76]. 
Several exercise-induced myokines have been described, in-
cluding myostatin, interleukin-6 (IL6). Myostatin was probably 
the first myokine to be described [88], whereas IL6 is the most 
extensively studied myokine in response to exercise or muscle 
contraction [89, 90].

3.1   |   Brain-Derived Neurotrophic Factor (BDNF)

BDNF (also called arbineurin) is an exerkine released by neu-
rons, and partly also by skeletal muscle [91, 92] in response 
to exercise, especially aerobic activity. As a neurokine, BDNF 
highlights the systemic impact of exercise, benefiting both brain 
health and potentially other tissues through endocrine pathways 
[76]. It affects angiogenesis [93, 94], neuronal development, syn-
aptic plasticity, growth and survival of neurons [95, 96]. BDNF is 
synthesised as a precursor protein (preproBDNF, ~34 kDa) and 
later cleaved to the 18 amino acid signal peptides to generate 
proBDNF (14 kDa), which is then transported to the Golgi appa-
ratus for conversion into mature BDNF (BDNF; ~14 kDa) by pro-
teases [97, 98] (Figure 3A). In contrast to most growth factors, 
certain processing products of proBDNF and BDNF pro-peptide 
have biological functions often opposing those of the mature 
mBDNF [99, 100].

BDNF is one of the most highly expressed growth factors in the 
CNS [101]. It is expressed in several regions of the brain, par-
ticularly in the hypothalamus, cerebellum, amygdala, and the 
temporal lobe [102–105]. It binds to the tropomyosin-related ki-
nase (TrkB) receptor, activates PI3K, MAPK, PLC-γ, and GTP-
ases of the Rho family, modulating synaptic plasticity [103], and 
enhancing dendritic growth and synaptic plasticity, and perhaps 
episodic memory [106–109], executive function, spatial memory, 
and learning [110–112].

Acute exercise significantly increases serum BDNF levels in 
concert with increasing exercise intensity [113–117]. Long-term 
exercise also increases basal BDNF levels in serum [118, 119]. 
Randomised clinical trials have shown that aerobic exercise in 
schizophrenic patients enhances neurocognition and BDNF lev-
els by nearly 15% in comparison to patients on regular psychiat-
ric treatment [120]. Serum BDNF levels increase in Parkinson's 
disease patients by 34% after 8 weeks of moderate interval train-
ing [121]. Moreover, serum BDNF concentrations were increased 
in obese individuals after 30 sessions of aerobic exercise [122].

Several studies have linked high levels of exercise-induced 
plasma BDNF to improved cognition [123–127]. Erickson et al. 
showed that a one-year aerobic exercise programme enhanced 
hippocampal volumes, memory, and serum BDNF levels [73]. 
A cross-sectional study assessed hippocampal volume, serum 
BDNF level and spatial memory in 142 participants (59–81 years 
of b), improved learning and memory in wild type and a Down 
syndrome mouse model [128]. Animal experiments indicated 
that BDNF may pass the BBB, and its blood levels may reflect 
the levels in the brain [129]. However, later studies have raised 
doubts about whether BDNF can pass the BBB or bind to its 
specific receptor on the BBB. Whether low, medium or high in-
tensity exercise can affect the permeability of the BBB to BDNF 
remains to be ascertained. Notably, plasma concentration of 
mBDNF has been shown to increase during exercise [130, 131]. 
Mechanistic studies on its transport across the BBB are war-
ranted to appreciate the beneficial effects of exercise-induced 
BDNF on brain structure and function.

Myocyte BDNF production plays a crucial role in mitigating 
the severe effects of myocardial ischemia [132]. In addition, the 
functional BDNF/TrkB signalling axis is essential for proper 
myocardial function, as underscored by recent studies revealing 
its importance for maintaining cardiac health under stressful 
conditions [104, 133]. Yang et al. explored whether myocardial 
BDNF/TrkB signalling influences cardiac responses to patho-
physiological stress [134]. They reported a significant reduction 
in BDNF levels in heart failure (HF) mouse models as well as 

FIGURE 3    |    The role of BDNF in mediating cognitive effects of PA. Acute and long-term exercise boost plasma BDNF levels, with long-term exer-
cise further augmenting basal BDNF levels, suggesting a potential for sustained effects. Exercise enhances BDNF levels in the brain and blood, but 
the mechanism by which blood BDNF may influence the brain is unclear. A year-long exercise programme in older adults enhanced blood levels of 
BDNF, increased hippocampal volume, and improved memory performance [73].
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humans with failing hearts. Interestingly, myocardial BDNF 
expression is increased in mice engaged in swimming exercise. 
Mice with a cardiac-specific TrkB knockout exhibited a compro-
mised adaptive response to swimming. These findings highlight 
the critical role of myocardial BDNF in modulating cellular re-
sponses to swimming, positioning it as a potential therapeutic 
target for enhancing cardiac function in HF [134]. Furthermore, 
BDNF levels decline with age, which may contribute to the de-
terioration of cardiac function observed in elderly individuals, 
further emphasising the importance of BDNF in age-related car-
diac pathophysiology [135].

3.2   |   Macrophage Colony-Stimulating Factor 1

A series of transcripts regulated by acute and long-term exer-
cise has been described recently, which identified macrophage 
colony-stimulating factor 1 (CSF1) as a secretory myokine up-
regulated by acute exercise as well as long-term physical activ-
ity [136]. This was based on the measurement of CSF1 mRNA 
expression in skeletal muscle and its protein concentration in 
plasma before and after short- (hours) and long-term (12 weeks) 
exercise in 26 sedentary men [137]. We have also simulated skel-
etal muscle contraction by electrical-pulse stimulation in vitro 
and observed an increase in CSF1 mRNA in skeletal myocytes 
and CSF1 protein concentrations in the conditioned medium 
of cultured human skeletal myocytes [136]. These observations 
indicate that CSF1 is a secretory protein from skeletal muscle 
induced by exercise, and its production is increased in response 
to acute as well as long-term exercise (Figure 4) [139].

Studies in humans and mice show that CSF1 exerts different 
effects on the brain via microglia density and microglia distri-
bution in both white and grey matter [138, 140]. Microglia are 
resident myeloid cells in the CNS acting both as glial cells, pre-
serving homeostasis with trophic support to neurons and other 
glial cells, and as immune cells carrying functions important 
in response to tissue damage [141]. The CSF1 receptor (CSF-1R) 
belongs to tyrosine kinase receptors and is activated by the two 
homodimer glycoprotein ligands: CSF1 [142] and IL-34 [143]. 
In contrast to CSF1, IL34 is not detectable in blood [144, 145], 
suggesting that its effects might be limited to its microenviron-
ment. A specific CSF-1R inhibitor given to mice led to a general 

depletion of microglia in the brain, whereas blocking the CSF1 
and IL34 function with antibodies specifically reduced microg-
lia density in the white and grey matter, respectively [138]. These 
data suggest that CSF1 may be of importance for linking some 
effects of exercise to the brain.

3.3   |   Vascular Endothelial Growth Factor (VEGF)

Skeletal muscle contributes to 60%–90% of peripheral vascu-
lar endothelial growth factor (VEGF) [146], and acute aerobic 
exercise transiently increases VEGF levels in muscle [147] and 
plasma [148, 149]. VEGF is a pro-angiogenic factor promoting 
vascularization in several tissue types and may play a role in 
neurogenesis. Intravenous administration of a VEGF antagonist 
attenuates running-induced hippocampal neurogenesis [150], 
whereas cerebroventricular administration of VEGF increases 
murine neurogenesis [151]. VEGF can cross the BBB, and most 
VEGF acting on the brain is probably derived from peripheral 
tissues [152]. By using a transgenic mouse deficient in skeletal 
muscle VEGF, it has been shown that VEGF deficiency reduces 
running-induced hippocampal neurogenesis [146].

3.4   |   Interleukin 6 (IL6)

Contrary to CSF1, which maintains increased blood concentra-
tion also during long-term exercise (12 weeks and 4 times per 
week of combined endurance and strength training), muscle-
secreted IL6 in plasma responds only to acute exercise and 
remains unchanged before and after 12 weeks of intervention 
[137]. Chronically elevated plasma IL6 in the resting state, on 
the other hand, seems to originate mostly from immune cells 
in adipose tissue [153]. The functions of IL6 include regulation 
of various biological processes associated with haematopoietic 
progenitor cells, adipose tissue, inflammation, hepatocytes, the 
placenta, the cardiovascular system, as well as the nervous and 
endocrine systems [154–156]. The expression of IL6 and IL6-R 
has been observed in both central and peripheral nervous tis-
sues, including glial and neuronal cells and sympathetic and 
sensory ganglia [157–161]. Long-term excessive levels of IL6 may 
have negative effects on the homeostasis and chemistry of the 
nervous system. For instance, depressive patients and patients 
resistant to antidepressants have chronically elevated plasma 
IL6 concentrations in the CNS [162, 163]. Similarly, schizo-
phrenic patients may have high plasma concentrations of IL6, 
and the severity of the disease is associated with the concentra-
tion of IL6 in the brain [164, 165]. Nevertheless, moderate and 
vigorous exercise may improve negative symptoms and brain 
function of schizophrenic patients [166].

3.5   |   Cathepsin B

Cathepsin B is another exercise-responsive myokine [167] that 
may exert effects on the brain. Voluntary wheel running in cathep-
sin B knockout mice did not enhance hippocampal neurogenesis 
and spatial memory, opposite to the wild type, suggesting a role of 
cathepsin B in exercise-associated cognitive improvements [168]. 
Cathepsin B and BDNF seem to be linked to long-term exercise 
among men [169, 170], and cathepsin B may improve cognitive 

FIGURE 4    |    Muscle-derived macrophage colony-stimulating factor 
(mCSF) is produced during exercise and remains elevated post-exercise. 
CSF1 affects a specific population of microglia in the brain in the white 
matter [138].
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function by increasing peripheral levels of BDNF [168, 171]. 
Cathepsin B may execute its effects on the brain via autophagy, 
modification of neuroinflammation, synaptic plasticity, neuro-
genesis and metabolic regulation [172, 173].

3.6   |   Lactate

Although the brain only accounts for about 2% of the body weight, 
it receives ~20% of the total blood flow responsible for supplying 
oxygen, nutrients, hormones, and neurotransmitters, and remov-
ing carbon dioxide, toxins, and metabolic waste products [174]. 
Exercise-enhanced angiogenesis and density of microvessels in 
the brain of ageing rats are associated with improved brain func-
tion [175]. High-intensity exercise promotes anaerobic conditions 
in skeletal muscle, and glucose is shunted to glycolysis along with 
the release of lactate. Lactate can reach the brain and bind to a spe-
cific receptor named hydroxycarboxylic acid receptor 1 (HCAR1) 
on fibroblast-like cells lining pial blood vessels (intracranial blood 
vessels on the surface of the brain), and may induce the expression 
of VEGFa [78] known for its role in angiogenesis [176], neurogen-
esis, synaptic transmission, and plasticity [177]. Thus, lactate may 
serve as a mediator of skeletal muscle–brain communication in 
angiogenesis, enhancing cerebral blood supply to support optimal 
cognitive performance and brain function.

4   |   Myelination

Exercise also may affect white matter in the brain; therefore, we 
will discuss how myelination is linked to cholesterol metabolism 

and exercise (Figure 5). Myelination begins around birth in the 
peripheral nervous system, progressing to the spinal cord, and 
then in the brain throughout adulthood [178]. Myelination be-
gins with the proliferation of oligodendrocyte precursor cells 
(OPCs) in the white matter. Then OPCs establish contact with 
axons and differentiate into myelinating oligodendrocytes.

Cholesterol increases myelin viscosity and stabilises myelin 
lipids and proteins, making it a critical and limiting factor for 
the development of myelin membranes in the CNS [179, 180]. 
BBB restricts the entry of peripheral cholesterol, meaning the 
primary source of brain cholesterol is local de novo synthesis in 
oligodendrocytes or astrocytes [181, 182]. Cholesterol in the CNS 
has a long half-life, lasting about 1 year in mice and up to 5 years 
in humans, compared to just a few days in plasma [183, 184].

4.1   |   Exercise and Myelination in Rodents

Several studies have shown that exercise promotes myelin-
ation in rodents. Long-term running exercise has been found 
to stimulate myelination in the motor cortex [185, 186], reverse 
toxin-induced demyelination [187] and preserve myelinated fi-
bres in brain white matter [188]. These findings are supported 
by a systematic meta-analysis of 21 articles demonstrating the 
positive impact of exercise on myelin sheath regeneration in ro-
dents [189].

A group of ‘depressive’ rats exhibited reduced length and vol-
ume of myelinated fibres, along with reduced volume and thick-
ness of myelin sheaths [190]. However, the quality of myelin 

FIGURE 5    |    Physical activity may be beneficial for myelin formation and cholesterol homeostasis in the CNS through oligodendrocyte cells, 
which play an important role in both the synthesis and recycling of cholesterol required for the function of cell membranes and myelination.
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improved significantly following exercise compared to a control 
group [190]. Similarly, AD mice on a running programme for 
4 months showed enhanced learning and spatial memory, as 
well as increased volumes of myelinated fibres in the CA1 region 
of the hippocampus [191].

4.2   |   Exercise and Myelination in Humans

A study including 88 healthy, untrained adults aged 60–78 years 
showed that engaging in exercise and avoiding sedentary be-
haviour enhanced myelin thickness in the brain [192]. Another 
study involving 10 sedentary subjects (74.5 ± 4.3 years of age) 
and 10 elite athletes (aged 72.2 ± 5.3 years, endurance training 
> 15 years) reported that life-long exercise was associated with 
smaller lesions in brain white matter and better motor control 
and coordination [193]. Voss et  al. examined the impact of a 
one-year aerobic fitness intervention on the integrity of ce-
rebral white matter and cognitive function in 70 adults aged 
55–80 years [194]. The fitness program did not improve white 
matter integrity or cognitive function on a group level, but in-
dividuals with a higher score of aerobic fitness in the program 
experienced improved white matter integrity in certain brain 
regions and enhanced short-term memory [194]. This study in-
dicated that improved white matter integrity was not directly 
correlated with memory improvement but was associated with 
the extent of fitness gain [194]. Similar results were observed in 
a one-year randomised controlled trial of aerobic exercise in-
volving 36 patients with amnestic mild cognitive impairment 
[195]. A systematic review of 38 studies comparing cognitive 
and exercise training showed that cognitive training improved 
white matter microstructure, whereas exercise tended to en-
hance connectivity and larger structural outcomes concern-
ing grey and white matter [196]. Some studies have reported a 
lack of correlation between exercise and myelination [197, 198]. 
However, it is important to note a limitation in these studies, as 
participants self-reported their exercise levels through monthly 
telephone interviews [199].

4.3   |   Apolipoprotein E, Myelination, and Exercise

Apolipoprotein E (ApoE) is important in cholesterol homeosta-
sis, with high expression in the liver and brain [200–202], and 
ApoE is associated with AD [203, 204]. In aged ApoE-knockout 
mice, foamy glia cells (lipid-loaded) accumulate in regions like 
the thalamus, fimbria hippocampi, and hippocampus associated 
with neurodegenerative and behavioural changes [205]. Long-
term aerobic exercise from midlife continued into old age miti-
gated neurovascular decline, reduced neuroinflammation, and 
enhanced synaptic plasticity and behavioural capabilities in 
mice [206]. The protective effects of exercise were linked to the 
preservation of astrocytic ApoE levels [206]. However, exercise 
had little effect on neurovascular decline or microglia activation 
in the absence of ApoE, suggesting that exercise may stabilise 
ApoE function [206].

ApoE2, ApoE3, and ApoE4 [207] represent common polymor-
phisms in the APOE gene; they play a significant role in lipid 
metabolism and CVD [208]. ApoE3 is the most prevalent vari-
ant in the general population, whereas ApoE4 constitutes the 

most significant genetic risk factor for AD [209]. These single 
amino acid polymorphisms modify the structure and function 
of ApoE, influencing its binding to lipids as well as receptors 
[210]. Prevalence varies by region, with APOE4 more common 
in certain populations, like Central Africa (40%), and less so in 
others, like South China (less than 10%). There is a gradient of 
APOE4 distribution in Europe and Asia, with higher prevalence 
in northern Europe and Asia (ca. 25%). APOE2 prevalence is 
higher in Africa and Oceania, with 9.9% and 11.1% penetrance, 
respectively. This variation may suggest selective advantages for 
specific alleles in different climates and populations [211–213].

Blanchard et  al. [214] examined 32 post-mortem brains (12 
ApoE3/3, 12 ApoE3/4 and 8 ApoE4/4 carriers), 20 with AD, 
and the total group included 20 ApoE4 carriers. Using single-
nucleus transcriptional profiling, they identified affected path-
ways related to cholesterol synthesis in oligodendrocytes (ODC) 
in ApoE4 carriers. Analysis of the hippocampus and prefrontal 
cortex revealed cholesteryl ester accumulation in ApoE4 carri-
ers and reduced myelination, suggesting issues with cholesterol 
incorporation into myelin [214]. They also investigated the im-
pact of ApoE4 on oligodendrocytes by creating human oligoden-
drocytes from induced pluripotent stem cells with engineered 
ApoE4 or ApoE3. They observed high cholesterol accumulation 
in ApoE4-carrying oligodendrocytes, particularly around the 
endoplasmic reticulum (ER). This cholesterol accumulation 
induced ER stress and promoted nuclear translocation of the 
stress-activated transcription factor ATF6 [214]. Promoting cho-
lesterol transport with cyclodextrin reduced cellular cholesterol 
accumulation, potentially incorporating cholesterol into myelin 
[214]. These results are compatible with dysfunctional myelin-
ation in asymptomatic ApoE4 carriers and reduced myelin levels 
in infants with ApoE4 [215, 216].

Amyloid-beta (Aβ) is predominantly synthesised in neurons 
by proteolytic cleavage of amyloid precursor protein. The brain 
employs multiple pathways for removal of Aβ, including (a) cel-
lular uptake and degradation; (b) enzymatic degradation; (c) 
clearance via the BBB; (d) clearance via interstitial fluid (ISF) 
bulk flow and (e) the glymphatic pathway. Cellular uptake of 
Aβ is facilitated by receptors like LDL receptor-related protein 
1 (LRP1), LDL receptor (LDLR), and heparan sulphate proteo-
glycan (HSPG) [217]. ApoE, primarily synthesised and lipidated 
by astrocytes, plays a crucial role in the clearance of Aβ. A sub-
pool of ApoE-containing lipoprotein particles interacts with sol-
uble Aβ released from neurons into the brain ISF. Elimination 
of soluble Aβ from brain ISF takes place in an ApoE isoform-
dependent manner, where ApoE4 displays lower efficacy com-
pared to ApoE2 or ApoE3 [218]. Abnormal myelination in the 
hippocampus may occur even before aggregation of amyloid 
and tau in AD mice [219]. It is possible that ApoE4 may compro-
mise cholesterol efflux/metabolism, promoting impaired my-
elination, which may induce cholesterol accumulation in ODC, 
transforming them into foam cells.

In a murine model of multiple sclerosis, it was shown that exer-
cise may improve BBB integrity and influence brain cholesterol 
homeostasis [220]. Scientists have reported effects of exercise on 
cholesterol flux in animals [221, 222]; thus, exercise may stimu-
late cholesterol efflux from brain cells, mitigating formation of 
foam cells. This may support optimal function of ODC, glia cells 
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and phagocytes, enhancing cholesterol turnover, improving my-
elination, and clearing Aβ (Figure 6).

5   |   Effect of Exercise on the Blood–Brain Barrier

The concept of BBB dates back to the late 19th century, founded 
on observations that dyes and biologically active substances 
did not impact the brain or behaviour unless directly injected 
into the CNS [223, 224]. The BBB is dynamic throughout life; 
for instance, the transport of amino acids by the BBB varies 
significantly from neonates to adults [225]. A recent study on 
20,000 subjects explored the permeability of the blood–cerebro-
spinal fluid barrier and the BBB, revealing significant sex dif-
ferences in barrier integrity across all age groups indicated by 
the (Cerebrospinal fluid) CSF/serum albumin ratio, a key bio-
marker of barrier function [226]. These findings indicated that 
males generally exhibit lower barrier integrity. Moreover, CSF 
reabsorption slows with age, contributing to higher CSF/blood 
albumin ratios. The extent to which this age-related increase in 
albumin ratios is due to BBB leakage or reduced CSF reabsorp-
tion remains unresolved [227].

Imaging, especially dynamic-contrast-enhanced magnetic reso-
nance imaging (DCE-MRI), is a preferred method for assessing 
BBB function in humans. Even during healthy ageing without 
pathological cognitive decline, BBB disruption is evident in the 
hippocampus, as well as in grey and white matter [228]. This 
disruption correlates with cognitive decline often associated 
with healthy ageing, particularly in delayed recall [229], high-
lighting a connection between BBB integrity and certain cogni-
tive changes associated with ageing.

Animal studies consistently show beneficial effects of physical 
activity on BBB structure and function [230, 231]. Heart failure is 
known to compromise BBB integrity, significantly contributing 
to autonomic nervous system dysfunction by increasing caveo-
lin-1 expression, enhancing vesicle trafficking and weakening 

tight junctions, thereby elevating BBB permeability [232]. This 
BBB dysfunction disrupts neural regulation and exacerbates the 
systemic effects of HF, whereas exercising Wistar rats restores 
BBB integrity by normalising caveolin-1 expression, reducing 
vesicle trafficking and strengthening tight junctions, all lower-
ing BBB permeability [232].

Insulin resistance within the CNS is often associated with cog-
nitive impairments like AD (ref). A study with CD-1 male mice 
showed that acute exercise increased insulin transport across 
the BBB and improved insulin vascular binding in the brain for 
both sexes [233].

A study demonstrates that long-term exercise enhances amy-
loid-β clearance by improving BBB function in 5XFAD mice, 
a transgenic model of AD that overexpresses amyloid-β (Aβ). 
Exosomes derived from exercised 5XFAD mice promote pro-
liferation and upregulate the mRNA expression of PDGFRβ, 
ZO-1, and claudin-5 in primary brain pericytes and endothelial 
cells in vitro. PDGFRβ is essential for pericyte survival and BBB 
maintenance, while ZO-1 and claudin-5 are key tight junction 
proteins that regulate endothelial barrier integrity and selective 
permeability. Notably, these exosomes exhibit significant alter-
ations in miR-532-5p levels, and when administered to sedentary 
mice or transfected into primary brain cells, they replicate the 
BBB improvements observed in exercised mice. These findings 
suggest that exercise-induced exosome signalling enhances BBB 
function by stabilising pericytes and reinforcing tight junction 
integrity, which may contribute to improved amyloid-β clear-
ance and neuroprotection in AD [234].

The effects of aerobic exercise on BBB integrity were also evalu-
ated in a rat model of multiple sclerosis, demonstrating that exer-
cise may improve markers of BBB integrity and reduce neuronal 
apoptosis [235].

A human intervention study explored the anti-inflammatory ef-
fects of exercise and taurine supplementation on BBB integrity, 

FIGURE 6    |    APOE alleles and their effects on CNS. APOE3 is the most common isoform, making up about 80% of alleles globally. APOE2 and 
APOE4 are less common, constituting around 5%–10% and 10%–15%, respectively.
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inflammation markers, and cognitive function in 48 elderly 
women for 14 weeks. Participants were divided into groups: (a) 
combined exercise training; (b) taurine supplementation; (c) 
both exercise and taurine or (d) a control group with no inter-
vention. Exercise alone (a), as well as in combination with tau-
rine (b), reduced inflammation and preserved BBB integrity. 
Importantly, the group receiving both interventions (c) exhibited 
a significant improvement in cognitive function by scores on the 
Mini-Mental State Examination [236].

A 12-week moderate-intensity aerobic exercise program in 56 
methamphetamine-dependent individuals (aged 18–45) signifi-
cantly improved neurofilament light chain and neuron-specific 
enolase blood levels compared to standard detoxification, indi-
cating enhanced neurological recovery and blood–brain barrier 
integrity in the exercise group [237].

The reviewed articles consistently demonstrate that exercise 
improved the structure and function of the BBB, irrespective of 
the underlying causes of BBB disturbance, which include age-
ing, insulin resistance, neurological disorders, heart failure and 
methamphetamine abuse. It is reasonable to conclude that exer-
cise may represent a good strategy for improving BBB integrity 
and function.

6   |   Summary and Future Direction

Exercise confers significant benefits across all ages and sexes 
(Figure  7), improving brain-related functions such as cogni-
tive performance, mood regulation, sleep quality and mental 
health conditions like depression and dementia. These effects 
seem to be mediated by metabolic improvements including en-
hanced insulin sensitivity, reduced inflammation and cardio-
vascular health [238], as well as exerkines/myokines like BDNF 

(Figure  3), CSF1 [140, 143] and cathepsin B [171]. The influ-
ence of exercise on the heart-brain axis is promising and merits 
deeper exploration [239].

The preventive and therapeutic potential of exercise enhances 
neuroplasticity and supports recovery, particularly in CNS dis-
orders characterised by demyelination, like multiple sclerosis. 
The evidence underscores the importance of incorporating exer-
cise into strategies designed to support ageing populations and 
manage neurodegenerative diseases.

Several questions still remain for future investigation. For in-
stance, how do different types of physical activity affect specific 
CNS regions? What myokines and exerkines are produced in re-
sponse to different forms of exercise, and how do these differ by 
exercise modality? Furthermore, how do male and female CNS 
and cardiovascular systems respond to exercise, and what are 
the differential effects of physical activity on the ageing CNS? 
Answers to these questions will advance our understanding of 
the mechanisms underlying exercise-induced CNS benefits and 
refine targeted interventions for diverse populations.
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