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Abstract

Magnesium is an essential mineral involved in hundreds of biochemical reactions, with
particular relevance to maintaining neural homeostasis, modulating neurotransmitter sys-
tems, and regulating inflammatory and oxidative stress mechanisms. This comprehensive
review aims to evaluate the potential role of magnesium in the pathophysiology and treat-
ment of three prevalent neurological and psychiatric disorders—depression, migraine,
and Alzheimer’s disease—as well as its broader implications for cognitive health. Cur-
rent research suggests that magnesium deficiency is associated with the development of
depression, as magnesium influences glutamatergic and GABAergic neurotransmission,
as well as the activity of the hypothalamic–pituitary–adrenal (HPA) axis, both of which
play critical roles in stress responses and mood regulation. Additionally, magnesium’s
anti-inflammatory properties may contribute to the alleviation of depressive symptoms. In
the context of migraine’s pathophysiology, magnesium plays a role in regulating cerebral
vascular tone, modulating the trigeminovascular system, and reducing neuronal hyperex-
citability, which may explain the observed correlation between magnesium levels and the
incidence of migraines. Regarding Alzheimer’s disease, preclinical and epidemiological
studies suggest that magnesium may contribute to modulating neurodegenerative pro-
cesses and preserving cognitive function; however, due to the heterogeneity of the current
findings, further longitudinal and interventional studies are necessary to determine its pre-
cise clinical relevance. This review aims to enhance the understanding of the relationship
between magnesium and these disorders through a narrative review of relevant clinical
studies. The findings may provide insights into the potential therapeutic applications
of magnesium and guide the future directions of the research into the prevention and
treatment of depression, migraine, and Alzheimer’s disease and overall cognitive health.
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1. Introduction
Magnesium is an essential macroelement that serves as a cofactor in more than 300

enzymatic reactions in the human body, playing a key role in nervous system function,
energy production, cellular homeostasis, and the regulation of inflammatory and oxidative
processes [1]. Magnesium ions are crucial for maintaining the balance of neurotransmitters
such as serotonin, dopamine, and glutamate, which have direct effects on mood and cogni-
tive functions [2]. Additionally, magnesium is involved in regulating the hypothalamic–
pituitary–adrenal (HPA) axis, one of the primary systems controlling the body’s stress
response [3].

In recent years, growing research interest has been directed toward investigating the
potential role of magnesium in various mental and neurological disorders, particularly in
depression, migraine, and Alzheimer’s disease [4,5]. Epidemiological and clinical studies
suggest that magnesium deficiency may be associated with the onset and progression of
these conditions, whereas adequate magnesium supplementation may exert a protective
effect [5,6].

The pathophysiology of depression is multifaceted, involving inflammatory pro-
cesses [7,8], impaired neuroplasticity, and dysfunction of the monoaminergic system [9]. In
addition to these mechanisms, depression itself is a well-established risk factor for accel-
erated cognitive decline and the development of dementia, including both Alzheimer’s
disease and vascular cognitive impairments [10], likely mediated through chronic inflam-
mation, HPA axis dysregulation, and reduced hippocampal neurogenesis [7,11–19]. Several
studies have demonstrated an association between low magnesium levels and depressive
symptoms [5,20–23], as magnesium influences glutamatergic, GABAergic, and monoamin-
ergic neurotransmission while reducing the levels of pro-inflammatory cytokines, which
play a central role in depression’s pathomechanism [24,25]. Some randomized controlled
trials suggest that magnesium supplementation may be an effective adjunctive therapy for
depression, particularly in patients with documented magnesium deficiency [3,21,26].

Migraine’s pathogenesis involves cortical hyperexcitability, dysregulation of cerebral
blood flow, and activation of the trigeminovascular system [27]. Studies indicate that
migraine patients frequently exhibit low magnesium levels in their blood and cerebrospinal
fluid, which may contribute to instability of cerebral vascular tone and excessive neuronal
excitability [28,29]. Some clinical trials suggest that magnesium supplementation may
reduce the frequency, duration, and intensity of migraine attacks, particularly in individuals
with magnesium deficiency [29,30].

Alzheimer’s disease is the most common neurodegenerative disorder [31], with its
pathogenesis involving oxidative stress, inflammation [32–37], microbial-infection-related
processes [8,38–40], mitochondrial dysfunction [41–43], microvascular dysfunction [44],
dysregulation of the cerebral blood flow [45,46], microbleeds [47], blood–brain barrier dis-
ruption [48,49], accelerated senescence [48], impaired proteostasis [50], amyloid-beta (Aβ)
deposition [51], tau pathologies [52,53], and disruption of the white matter’s integrity [54]
and functional connectivity [55–60]. The pathogenesis of Alzheimer’s disease is modulated
by APOE status [61,62] and other genetic factors [63–67]; a range of cardiovascular risk fac-
tors [68–71]; and lifestyle [72–82] and environmental risk factors [83–85]. Given the global
increase in dementia cases and the limited efficacy of the current pharmacologic interven-
tions, prevention strategies targeting modifiable factors such as dietary factors warrant
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closer examination. Several epidemiological studies indicate that magnesium deficiency
is associated with neurodegeneration, Aβ accumulation, and cognitive decline, whereas
an adequate magnesium intake may exert protective effects on cognitive health [86–88].
However, clinical studies on Alzheimer’s disease and magnesium supplementation have
yielded conflicting results, necessitating further research to clarify its therapeutic potential.

This comprehensive review aims to systematically evaluate the role of magnesium in
the pathogenesis and treatment of depression, migraine, and Alzheimer’s disease and in
cognitive health. To our knowledge, this is the first narrative review to compare the effects
of magnesium across these three major neurological disorders, with a particular focus on
their shared pathophysiological mechanisms. Special attention is given to the extent to
which available clinical data support the efficacy of magnesium supplementation in these
conditions. Its findings may contribute to elucidating the potential clinical applications of
magnesium and identifying future research directions.

2. Methods
A comprehensive literature search was conducted using four major scientific databases:

PubMed, Scopus, Web of Science, and Embase. Relevant studies published in both English
and Hungarian were considered. The search covered the period from 2000 to 2025, reflect-
ing the substantial advancements in neuroscience and psychiatry related to magnesium
research over the past two decades.

The search strategy employed a combination of keywords and Boolean operators to
identify relevant publications. Key terms included magnesium, Mg, depression, major
depressive disorder, migraine, headache disorders, Alzheimer’s disease, cognitive decline,
dementia, cognitive health, neurotransmitters, glutamate, GABA, serotonin, dopamine,
inflammation, pro-inflammatory cytokines, IL-6, TNF-alpha, oxidative stress, ROS, an-
tioxidants, hypothalamic–pituitary–adrenal axis, and cortisol. To optimize the search’s
efficiency, Boolean operators were applied as follows:

• AND was used to link related concepts (e.g., magnesium AND depression AND
neurotransmitters);

• OR connected synonyms (e.g., depression OR major depressive disorder);
• NOT was used to exclude irrelevant studies.

2.1. Application of the PICO Model

To clearly formulate the research question and ensure focused data extraction, the
PICO model (Population, Intervention, Comparison, Outcome) was applied, as summa-
rized in Table 1.

Table 1. The application of the PICO model to defining the research question.

Category Description

Population (P) Adults and elderly individuals (≥18 years), patients with
depression, migraine, or Alzheimer’s disease

Intervention (I) Magnesium supplementation in any form (oral,
intravenous), the effects of a magnesium-rich diet

Comparison (C) Placebo or other standard treatments, comparison between
individuals with low and normal magnesium levels

Outcome (O)

Improvement in mood and cognitive function, reduction in
depressive symptoms (e.g., Beck Depression Inventory

scores), changes in migraine attack frequency and intensity,
slowing of Alzheimer’s disease progression (e.g.,

Mini-Mental State Examination (MMSE) score changes)
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2.2. The Inclusion and Exclusion Criteria

The eligibility of studies was determined using predefined inclusion and exclusion
criteria to ensure the relevance and methodological rigor of the selected literature (Table 2).

Table 2. The inclusion and exclusion criteria for the reviewed studies.

Inclusion Criteria Exclusion Criteria

Randomized controlled/clinical trials Animal studies and in vitro research

Longitudinal and prospective
cohort studies

Non-peer-reviewed articles, conference
abstracts, opinion papers

Full-text, peer-reviewed scientific articles Case reports

Studies conducted on human participants Studies published in languages other than
English or Hungarian

2.3. The Data Extraction and Analysis Methods

The study selection was performed by two independent researchers, and any discrep-
ancies were resolved through consensus-based discussion. The extracted data included the
following variables:

• Study type (e.g., RCT, longitudinal study);
• Sample size and demographic characteristics;
• Magnesium dosage and administration route;
• Measurement methods and primary outcome variables.

Our findings aim to contribute to a better understanding of the therapeutic role of
magnesium in depression, migraine, and Alzheimer’s disease. This review article includes a
total of 43 clinically relevant studies, organized into tables, comprising 219,224 participants.
The study selection process is illustrated in Figure 1.

Figure 1. A flowchart illustrating the selection process for the included articles.
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In the following sections, we examine the potential role of magnesium in three major
neurological and psychiatric conditions—depression, migraine, and Alzheimer’s disease—
using a consistent structure that includes a brief overview of their pathophysiology, the
current evidence, the limitations of the literature, and possible clinical applications.

3. The Role of Magnesium Supplementation in the Treatment
of Depression

In recent years, an increasing body of scientific evidence has supported a close relation-
ship between depression and low magnesium levels [3,5,89–95]. Several epidemiological
and clinical studies have confirmed that depressed patients often exhibit low magnesium
levels, which may contribute to the onset or worsening of the disease [6,89–91]. Magnesium
plays a key role in regulating neurological processes, including the balance of neurotrans-
mitters (such as glutamate, GABA, and serotonin), as well as reducing oxidative stress and
inflammation [2]. Nevertheless, the effectiveness of magnesium supplementation in the
treatment of depression has been evaluated in only a limited number of studies, and the
results remain inconclusive.

Various randomized clinical trials have shown mixed results regarding the asso-
ciation of magnesium supplementation and depression, but several studies have indi-
cated an improvement in serum magnesium levels and depressive symptoms (Table 3).
Afsharfar et al. [96] conducted a study in which 46 depressed patients received 500 mg of
magnesium oxide daily for 8 weeks as monotherapy. In the treatment group, there was a sig-
nificant improvement in their Beck Depression Inventory (BDI) scores (p = 0.01), and their
serum magnesium levels increased (p = 0.001), although there was no significant change
in their Brain-Derived Neurotrophic Factor (BDNF) levels. Barragán-Rodríguez et al. [97]
examined 23 elderly patients with type 2 diabetes and hypomagnesemia. Although no
significant difference in depressive symptoms was found between the magnesium chloride
and Imipramine groups (p = 0.27), the magnesium chloride group showed significantly
higher serum magnesium levels (p < 0.0005).

Rodríguez-Morán et al. [98] conducted a study involving 60 long COVID patients who
received 1300 mg of magnesium chloride and 4000 IU of vitamin D daily for 4 months. In
the intervention group, a significant decrease in their BDI scores was observed (p < 0.01),
while the control group also showed improvements, albeit to a lesser extent (p < 0.05).
Rajizadeh et al. [99] conducted a study with 60 depressed patients who received magne-
sium oxide supplementation for 8 weeks, resulting in a significant improvement in both
their BDI-II scores (p = 0.02) and serum magnesium levels (p = 0.002). The magnesium group
showed a greater reduction in depressive symptoms compared to that in the placebo group.

Abiri et al. [100] studied 108 obese women who received vitamin D and magnesium.
The results showed a significant improvement in the depressive symptoms and inflam-
matory markers in the intervention group (vitamin D and magnesium) compared to that
under vitamin D supplementation only, but no significant difference was observed be-
tween the different treatment groups regarding the severity of depression. In the study
by Shakya et al. [101], the relationship between dietary habits and depression was inves-
tigated. The results indicated that a “prudent” diet (a generally healthy, plant-forward
diet) was inversely related to depressive symptoms, while a “Western” diet contributed
to their development. Fard et al. [102] studied 99 women postpartum who were given
either magnesium or zinc sulfate, but no significant improvement in their depression levels
was found.
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Table 3. Magnesium and depression: clinical outcomes from randomized trials.

Study (Ref.) Intervention Duration Participants Outcomes
Measured Key Findings

Afsharfar
et al. [96]

Oral magnesium
oxide

500 mg/day for
8 weeks

46 depressed
patients

(randomized into
Mg and placebo

groups)

Beck Depression
Inventory scores,

serum BDNF,
serum Mg

Significant
improvement in BDI
scores (p = 0.01) and

serum Mg levels
(p = 0.001); no

change in BDNF
(p = 0.507)

Barragán-
Rodríguez
et al. [97]

Oral magnesium
chloride (MgCl2)

450 mg of
elemental Mg/day

for 12 weeks

23 elderly patients
with type 2

diabetes and
hypomagnesemia

Yasavage and
Brink depression

scores, serum
Mg levels

No difference in
depression (p = 0.27);
higher serum Mg in

the MgCl2 group
(p < 0.0005)

Rodríguez-
Morán et al. [98]

Oral magnesium
chloride

+ vitamin D

1300 mg of MgCl2
+ 4000 IU of

vitamin D daily for
4 months

60 long COVID
patients with mild

to moderate
depression

Beck Depression
Inventory (BDI)

scores

A significant
reduction in BDI
scores (p < 0.01

intervention; p < 0.05
control)

Rajizadeh
et al. [99]

Oral magnesium
oxide (MgO)

500 mg/day for
8 weeks

60 depressed
patients (Mg vs.
placebo groups)

Beck Depression
Inventory-II scores,

serum Mg levels

Significant
reductions in BDI

scores (p = 0.02) and
Mg (p = 0.002);

15.65 points (Mg) vs.
10.40 (placebo)

Abiri et al. [100] Oral magnesium +
vitamin D

50,000 IU of
vitamin D weekly +
250 mg of Mg daily

for 8 weeks

108 obese women
with mild to

moderate
depression

BDI-II scores,
inflammatory

markers,
25(OH)-D,
serum Mg

Significant
improvements in

markers; no
significant difference

in BDI-II scores

Shakya et al.
[101]

Dietary patterns
(PCA, RRR, PLS) N/A

1743 adults from
the North West

Adelaide Health
Study (NWAHS)

CES-D scores,
dietary patterns

‘Prudent’ diet
inversely and
‘Western’ diet

positively associated
with depression

(PCA:
OR = 0.57, 2.04)

Fard et al. [102] Oral magnesium
sulfate, zinc sulfate

27 mg of zinc
sulfate or 320 mg

of magnesium
sulfate for 8 weeks

99 women
postpartum

(randomized
into groups)

Edinburgh
Postnatal

Depression Scale
scores, Anxiety

Inventory scores

No significant
difference in
depression

(p = 0.553) or anxiety

Mehdi et al. [103] IV magnesium
sulfate

4 g of magnesium
sulfate in 5%

dextrose for 8 days
(5-day washout)

12 subjects with
mild to moderate

treatment-resistant
depression

Serum Mg,
PHQ-9 scores

A significant
increase in serum
Mg (p = 0.02); a

decrease in PHQ-9
scores (p = 0.02)

Tarleton
et al. [23]

Oral magnesium
chloride

248 mg/day for
6 weeks

126 adults with
mild to moderate

depression

PHQ-9 scores,
GAD-7 scores,

adherence,
adverse effects

Significant
improvements in

PHQ-9 (−6.0 points,
p < 0.001) and

GAD-7 (−4.5 points,
p < 0.001) scores
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Table 3. Cont.

Study (Ref.) Intervention Duration Participants Outcomes
Measured Key Findings

Ryszewska-
Pokraśniewicz

et al. [22]

Oral magnesium
aspartate

120 mg/day for
8 weeks with

fluoxetine

37 patients with
recurrent

depression
disorder

HDRS scores,
serum Mg levels,
pharmaco-EEG

No significant
changes in HDRS

scores but increased
effectiveness with

magnesium
augmentation

Pouteau
et al. [104]

Oral magnesium +
vitamin B6

300 mg of Mg +
30 mg of vitamin

B6 for 8 weeks

264 healthy adults
with stress

(DASS-42 > 18)

DASS-42 stress
subscale scores

A 24% greater
improvement in

severe stress with
Mg + B6 (p = 0.0203)

Derom
et al. [105]

Dietary
magnesium intake

Median follow-up
of 6.3 years

12,939 Spanish
university
graduates

Depression
incidence

(self-reported,
antidepressant

use)

No association
between Mg intake
and depression risk

(p-trend = 0.59)

Nazarinasab
et al. [106]

Oral magnesium
supplement,
250 mg/day

6 weeks of Mg vs.
placebo + SSRI

treatment

60 patients with
major depressive
disorder (MDD)

Beck Depression
Inventory-II scores

A significant
improvement in BDI

scores at 4 and 6
weeks (p = 0.02,

p = 0.001)

Abbreviations: Mg: Magnesium; MgCl2: Magnesium Chloride; BDI: Beck Depression Inventory; BDNF: Brain-
Derived Neurotrophic Factor; PCA: Principal Component Analysis; RRR: Reduced Rank Regression; PLS: Partial
Least Squares; CES-D: Center for Epidemiologic Studies Depression Scale; DASS-42: Depression Anxiety Stress
Scale–42 items; GAD-7: Generalized Anxiety Disorder 7-item scale; PHQ-9: Patient Health Questionnaire-9; SSRI:
Selective Serotonin Reuptake Inhibitor; 25(OH)-D: 25-Hydroxyvitamin D; HDRS: Hamilton Depression Rating
Scale; OR: Odds Ratio.

Mehdi et al. [103] intravenously administered magnesium sulfate (4 g in 5% dextrose
solution) over 8 days, followed by a 5-day washout period. The participants (n = 12) had
mild to moderate treatment-resistant depression. The intervention led to a significant
increase in their serum magnesium levels (p = 0.02) and a significant reduction in their
PHQ-9 depression scores (p = 0.02). Tarleton et al. [23] evaluated the effects of daily oral
magnesium supplementation (248 mg) over 6 weeks in 126 adults. Significant improve-
ments were observed in both their depressive and anxiety symptoms (PHQ-9: –6.0 points;
GAD-7: –4.5 points), with effects emerging as early as 2 weeks.

Ryszewska-Pokraśniewicz et al. [22] studied 37 depressed patients who received
fluoxetine and magnesium. No significant differences were observed on the Hamilton
Depression Rating Scale (HDRS), but magnesium treatment increased the likelihood of
effectiveness, particularly in patients with lower baseline HDRS scores. In the study
by Pouteau et al. [104], 264 healthy adults were tested, and those who received both
magnesium and vitamin B6 showed a 24% greater improvement in their DASS-42 stress
scores compared to these values in those who only took magnesium, particularly in those
with high stress levels (p = 0.02). Finally, Derom et al. [105] and Nazarinasab et al. [106]
found no significant long-term association between magnesium intake and the risk of
depression, although smaller improvements were observed in some groups.

Overall, these studies suggest that magnesium supplementation may have a beneficial
effect on depressive symptoms, but the degree and consistency of its effect vary. While
several studies have found significant improvements, others were less successful. Further
research is necessary to determine the optimal dosage, underlying mechanisms, and long-
term outcomes better. These contradictory results may be attributed to several factors.
Different studies used varying sample sizes, measurement methods, and magnesium
supplementation protocols, making it difficult to compare the results and draw general
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conclusions. Additionally, depression is a complex, multifactorial condition that involves
not only nutritional factors but also genetic, environmental, and psychological elements.
Based on the existing evidence, the relationship between magnesium and depression
appears clear, but the therapeutic effect of magnesium supplementation requires further
large-scale, well-designed clinical trials. The following table summarizes the clinical
outcomes of randomized trials investigating magnesium supplementation in depression
(Table 3).

4. The Role of Magnesium in the Pathophysiology of Migraine
Magnesium plays an essential role in neurological function, including neurotrans-

mission, regulation of vascular tone, and inhibition of the NMDA receptors [6]. Several
studies have demonstrated that patients with migraine frequently exhibit low serum and
intracellular magnesium levels, particularly during migraine attacks [28–30,107,108]. Mag-
nesium deficiency may contribute to neuronal hyperexcitability, the development of cortical
spreading depression (CSD), and enhanced activation of the trigeminovascular system—all
of which are central mechanisms in the pathogenesis of migraine attacks [109]. Oral magne-
sium used for prophylactic purposes (e.g., magnesium oxide at a daily dose of 400–600 mg)
has been shown to be effective in several randomized controlled trials in reducing the
frequency and intensity of migraine attacks, especially in cases of menstrual migraine and
migraine with aura [30,110].

Numerous clinical studies have investigated the use of intravenous magnesium sul-
fate in the treatment of migraine attacks, yielding partly conflicting results [111,112].
Cete et al. [113] evaluated 113 adult migraine patients treated with MgSO4 (2 g) or meto-
clopramide (10 mg). Both groups demonstrated significant improvements on the Visual
Analogue Scale (VAS) exceeding 25 mm within 30 min; however, no statistically signif-
icant difference was observed between the groups. The placebo group required more
rescue medication.

Corbo et al. [114] compared magnesium sulfate combined with metoclopramide and
metoclopramide with a placebo in acute migraine patients and found that the magnesium
group showed lower pain reductions and that fewer patients achieved normal functioning.
Conversely, Demirkaya et al. [115] reported that a single 1 g MgSO4 infusion led to an 87%
pain-free status and the complete resolution of symptoms in 100% of patients, with only
mild and non-serious side effects; however, it should be noted that this was a pilot study
with a small sample size.

Bigal et al. [116] demonstrated that magnesium sulfate was particularly effective in
reducing pain and symptoms in migraine with aura, while in migraine without aura, only
photophobia and phonophobia showed significant improvements. Shahrami et al. [117]
also observed faster and more pronounced pain relief with MgSO4 compared to that with
dexamethasone plus metoclopramide.

Magnesium’s efficacy as an adjunct therapy is supported by Matin et al. [118], who
found significant reductions in migraine-associated inflammatory markers and symptoms
when vitamin B12 and high-intensity interval training were combined with magnesium
supplementation. Other studies, such as Kandil et al. [119] and Gaul et al. [120], showed
comparable analgesic effects between magnesium, metoclopramide, and prochlorperazine,
as well as modest benefits from magnesium-containing combination supplements on
migraine days.

In emergency settings, Rahimdel et al. [121] confirmed the effectiveness of MgSO4 in
reducing pain intensity 60 and 90 min post-administration. However, Ginder et al. [122]
highlighted that magnesium’s efficacy was not correlated with serum magnesium lev-
els. In prophylactic use, Khani et al. [123] reported that three months of treatment with
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magnesium, sodium valproate, or their combination significantly reduced the frequency
and severity of migraines, with the combination therapy showing superior outcomes.
Similarly, Karimi et al. [124] found comparable efficacy between magnesium oxide and
sodium valproate in an 8-week crossover trial. Tarighat Esfanjani et al. [125] investigated
magnesium oxide, L-carnitine, and their combination over 12 weeks, revealing significant
improvements in all intervention groups regarding the frequency and severity of migraines.
Köseoglu et al. [126] demonstrated that three months of oral magnesium citrate treatment
significantly decreased the frequency and severity of migraines and improved the cortical
blood flow in patients with migraine without aura. Overall, the literature suggests that
various forms of magnesium can be effective in both acute migraine management and
prophylaxis, particularly in migraine with aura. Magnesium treatments generally have a
favorable safety profile, although further research is warranted to understand their mech-
anisms better and optimize the therapeutic protocols. A summary of key clinical trials
evaluating magnesium in both acute and prophylactic treatment of migraines is presented
in Table 4.

Table 4. Summary of clinical studies on magnesium in acute and prophylactic migraine treatment.

Study (Ref.) Intervention Duration Participants Outcomes
Measured Key Findings

Magnesium supplementation only

Demirkaya
et al. [115] IV MgSO4 (1 g) Single 15 min

infusion

30 patients
(15 Mg, 15

placebo) with
migraine

Pain, symptoms,
side effects at 0
and 30 min and

2 h

87% pain-free with
Mg vs. 0% with the

placebo; total
symptom relief:

100% vs. 20%; mild
side effects

Bigal et al.
[116] IV MgSO4 (1 g) Single 10 mL

infusion

120 patients (60
with aura, 60
without aura)

Pain, nausea,
photophobia,
phonophobia,

aura

With aura:
significant relief

(NNT = 2.7);
without aura: no

pain/nausea
relief (NNT = 5.98); ↓
photo/phonophobia

Combined supplementation

Cete et al. [113]

IV MgSO4 (2 g)
+ metoclo-
pramide
(10 mg)

Single 10 min
infusion

113 adults with
migraine (IHS
criteria), three

groups

VAS scores at 0,
15, and 30 min;

rescue meds;
recurrence at

24 h

All groups
improved by

>25 mm; no VAS
differences; the
placebo needed

more rescue meds

Corbo
et al. [114]

IV MgSO4 (2 g)
+ metoclo-
pramide

(20 mg) vs.
placebo

Max of three
doses at 15 min

intervals

44 adults with
acute migraine

VAS scores at
0–45 min;

function; side
effects

The Mg group was
less effective

(–16 mm); NNH = 4;
worse functional

outcomes

Shahrami
et al. [117]

IV MgSO4 (1 g)
vs. 8 mg dex-
amethasone +

10 mg metoclo-
pramide

Single IV dose

70 adults,
randomized into

two equal
groups

NRS scores at the
baseline, 20 min,

1 h, and 2 h

MgSO4 led to faster
and greater pain

reductions (2 h NRS
scores: 1.3 vs. 2.5);

p < 0.0001
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Table 4. Cont.

Study (Ref.) Intervention Duration Participants Outcomes
Measured Key Findings

Matin
et al. [118]

Oral
magnesium
(250 mg) +

vitamin B12
(1 mg) ± HIIT

2 months
60 women, four

randomized
groups

CGRP levels,
MIDAS scores,

frequency,
intensity,
duration

HIIT + Mg reduced
CGRP levels and

migraine indicators
the most; supported

by in silico
anti-inflammatory

findings

Kandil
et al. [119]

IV Mg (2 g),
metoclo-
pramide

(10 mg), or
prochlorper-

azine (10 mg)

Single IV dose

157 adult ED
migraine
patients,

randomized into
three groups

NRS scores at 30,
60, and 120 min;
ED stays; rescue
meds; adverse

events

No significant
difference at 30 or
60 min (e.g., ∆NRS
score at 60 min: Mg:
–4, p = 0.27); similar

side effect rates

Gaul et al. [120]

Oral Mg
(1100 mg) +
riboflavin
(400 mg) +

CoQ10
(150 mg)

(combined
supplement)

3 months (after
the 4-week
baseline)

130 adults with
≥3 mi-

graines/month

Migraine days,
pain intensity,
HIT-6 scores,

subjective benefit

Days: –1.8 vs. –1.0
(NS); pain (p = 0.03),

HIT-6 scores
(p = 0.01), subjective

efficacy (p = 0.01)

Rahimdel
et al. [121]

IV MgSO4 (1 g
in 100 mL

saline) vs. DHE
Single IV dose

120 severe
migraine

patients in
the ER

VAS scores at 30,
60, and 90 min

Mg group
significantly better
at 60 and 90 min

(VAS scores: 2.48 vs.
3.48 at 90 min;

p < 0.05)

Ginder
et al. [122]

IV MgSO4 (1 g)
vs. prochlorper-

azine
Single IV dose

36 ED patients
with acute
headache

VAS score before
and 30 min

post-infusion

Pain relief: 90%
(prochlorperazine)

vs. 56% (Mg),
significant; Mg’s

effect not related to
serum Mg levels

Khani
et al. [123]

Oral
magnesium

(500 mg/day),
sodium

valproate
(400 mg/day),

and their
combination
for 3 months

A: VPA 200 mg
BID + P; B: VPA

200 mg BID +
Mg 250 mg BID;
C: Mg 250 mg

BID + P

222 patients
(18–65 years),

≥4 mi-
graines/month;

three
randomized

groups

Frequency,
severity,
duration,

painkillers/month,
MIDAS scores,
HIT-6 scores

All groups
improved

(p < 0.001); combo
> valproate > Mg

alone; greater
MIDAS/HIT-6 score
reduction in combo

and valproate
groups (p < 0.001)

Karimi
et al. [124]

Oral
magnesium

oxide (500 mg
BID) vs.
sodium

valproate
(400 mg BID)

8 weeks,
crossover

70 migraine
patients; 63
completed

Monthly attack
frequency,

headache days,
headache hours

No significant
difference between

treatments; both
effective and safe
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Table 4. Cont.

Study (Ref.) Intervention Duration Participants Outcomes
Measured Key Findings

Tarighat
Esfanjani
et al. [125]

Oral
magnesium

oxide
(500 mg/day)

and L-carnitine
(500 mg/day)

12 weeks; Mg
500 mg/day,
L-carnitine

500 mg/day,
combo = same

doses

133 migraine
patients,

randomized into
three

intervention
groups and one
control group

Attacks/month,
days/month,
severity, and

serum Mg and
L-carnitine levels

All interventions
reduced migraine

indicators (p < 0.05);
ANOVA: significant
frequency reduction
(p = 0.008); Mg had

an independent
significant effect

Köseoglu
et al. [126]

Oral Mg citrate
(600 mg/day) 3 months

40 patients with
migraine

without aura (30
Mg, 10 placebo),

aged 20–55

Attack frequency,
severity, P1

amplitude (VEP),
cortical

perfusion
(SPECT)

Mg group: ↓
frequency

(p = 0.005), ↓
severity (p < 0.001),
↓ P1 (p < 0.05); ↑

cortical perfusion
(p = 0.001–0.01); all

vs. placebo
significant

Abbreviations: BID = twice daily; Mg/MgSO4: magnesium/magnesium sulfate; IV: intravenous; VAS: Visual
Analogue Scale; NRS: Numeric Rating Scale; NNH: Number Needed to Harm; NNT: Number Needed to Treat;
MIDAS: Migraine Disability Assessment Scale; HIT-6: Headache Impact Test; CGRP: Calcitonin-Gene-Related
Peptide; HIIT: high-intensity interval training; CoQ10: Coenzyme Q10; DHE: Dihydroergotamine; VEP: Visual
Evoked Potential; SPECT: Single-Photon Emission Computed Tomography; ↓: decrease, ↑ increase.

5. The Role of Magnesium in Dementia Prevention and Slowing the
Progression of Alzheimer’s Disease

Dementia is one of the leading causes of disability and mortality among older adults
worldwide [127]. Due to the aging global population, both the number of affected individ-
uals and the associated healthcare costs are increasing exponentially [128]. According to
data from 2023, over 55 million people are currently living with dementia, and this number
is projected to rise to 139 million by 2050 [129,130]. In light of this, there is an urgent need
to develop effective, evidence-based preventive strategies.

Alzheimer’s disease is the most prevalent form of neurodegenerative dementia and
poses a growing global public health challenge [131]. It is characterized by progressive
neuronal loss affecting multiple brain regions. Despite extensive research efforts, no effec-
tive cure currently exists [132]. The limited success of pharmacological interventions over
recent decades has shifted the focus toward prevention and the identification of modifi-
able risk factors involved in disease pathogenesis [133]. In this context, magnesium has
garnered increasing scientific interest due to its involvement in numerous neurobiological
processes potentially influencing the onset and progression of AD [134]. Although the
precise mechanisms remain incompletely elucidated, recent studies have identified several
pathways through which magnesium may exert a protective effect [135].

Magnesium plays a critical role in maintaining synaptic plasticity and neuronal func-
tion. It modulates the activity of the N-methyl-D-aspartate glutamate receptors, which
are essential for learning and memory [2]. Excessive activation of these receptors can lead
to excitotoxicity, a process that contributes to neuronal damage and is implicated in AD
progression [136]. By attenuating NMDA receptor overactivation, magnesium may confer
neuroprotective benefits [137]. Furthermore, magnesium exhibits antioxidant properties
that may mitigate oxidative stress—an established contributor to AD pathophysiology [2].
Oxidative stress arises from the excessive generation of reactive oxygen and nitrogen
species, which damage the neuronal structures over time [138]. Adequate magnesium
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levels may support endogenous antioxidant defenses and help counteract these harmful
effects [139].

Chronic neuroinflammation is another major factor in AD development [140]. Acti-
vated microglia and the overproduction of pro-inflammatory cytokines contribute to sus-
tained neuroinflammatory responses and subsequent neurodegeneration [141]. Magnesium
may exert immunomodulatory effects that reduce central nervous system inflammation
and slow the associated neuronal damage [135]. Magnesium is also involved in the regula-
tion of two hallmark pathologies of AD: amyloid-beta plaques and neurofibrillary tangles
composed of hyperphosphorylated tau protein [142]. Emerging evidence suggests that
magnesium may influence Aβ peptide aggregation and clearance, as well as attenuating
pathological tau phosphorylation—mechanisms that could lessen the morphological bur-
den of AD [143,144]. Additionally, magnesium is indispensable to mitochondrial function
and cellular energy metabolism [145]. Mitochondrial dysfunction is a fundamental compo-
nent of AD pathophysiology that contributes to neuronal energy failure and apoptosis [146].
By preserving mitochondrial integrity, magnesium may help maintain neuronal viability
and slow disease progression [147].

6. Epidemiological and Clinical Evidence
6.1. Serum Magnesium Levels and Dementia Risk

Numerous observational and interventional studies have investigated the extent
to which magnesium deficiency (hypomagnesemia) may contribute to the development
and progression of Alzheimer’s disease [4,6,21,148–150]. A randomized controlled trial
reported that the calcium-to-magnesium ratio may influence the methylation patterns
of the APOE gene, which plays a key role in the pathomechanism of AD [151]. The
authors observed that modified magnesium intake could affect cognitive function through
epigenetic mechanisms, thereby potentially influencing the risk of AD [151]. Further
support for this association comes from a comprehensive meta-analysis that summarized
data from 21 studies [152]. The analysis found that individuals with AD had significantly
lower serum and plasma magnesium levels compared to those in healthy controls (mean
difference: –0.09 mmol/L, p < 0.001), suggesting that magnesium deficiency may be linked
to the prevalence of AD [152].

The REGARDS study, a large, long-term American cohort, concluded that low serum
magnesium levels (<0.75 mmol/L) are associated with an increased risk of cognitive
decline [153]. Magnesium concentrations in the upper–normal range (0.85–0.89 mmol/L)
were associated with a protective effect, whereas levels exceeding the normal range did
not confer additional benefits. These findings suggest that maintaining adequate—but
not excessive—magnesium levels may be linked to preserved cognitive health in older
adults [153]. Another longitudinal study demonstrated that both low (≤0.79 mmol/L) and
high (≥0.90 mmol/L) serum magnesium levels were associated with an increased overall
risk of dementia, particularly non-Alzheimer’s subtypes such as vascular dementia. The
lowest risk was observed within the middle quintile (~0.85 mmol/L), which is considered
the optimal range. The mediation analysis from the same study indicated that diabetes
may be a major mediating factor in the relationship between low magnesium levels and
dementia risk, whereas smoking, stroke, and hypertension appeared to play more minor
roles [154]. The Atherosclerosis Risk in Communities (ARIC) study also demonstrated
that low midlife serum magnesium levels were associated with a 24% increased risk
of developing dementia later in life, compared to higher magnesium levels, used as a
reference. Although the incidence of dementia was elevated in the low-magnesium group,
no significant differences were found in the rates of cognitive decline (e.g., memory and
executive functions), suggesting that magnesium levels may influence the risk of dementia
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onset rather than the speed of cognitive deterioration [155]. Finally, the findings from
the Rotterdam Study indicated that both low (≤0.79 mmol/L) and high (≥0.90 mmol/L)
serum magnesium levels were associated with a 30% increased risk of dementia compared
to that for the middle reference range (0.80–0.89 mmol/L). These results imply that both
extremes of magnesium status may be detrimental to cognitive health and that maintaining
an optimal, balanced magnesium level may have preventive importance [156]. Based
on the epidemiological evidence, maintaining an adequate magnesium intake—within a
recommended dietary allowance of 400–420 mg/day for men and 310–320 mg/day for
women—may play a particularly important role in the prevention of dementia, especially
in older adults and individuals with metabolic risk factors such as diabetes or hypertension.
A growing body of scientific research supports the notion that magnesium is a critical
modulator of neurodegenerative processes and may contribute to the prevention or slowing
of Alzheimer’s disease progression [135,145,157].

6.2. Magnesium Intake and Supplementation and Cognitive Outcomes

Numerous studies have demonstrated the role of magnesium in regulating cognitive
functions and dementia risk [4,6,148,158]. Zhu et al. [151], in a cohort of 250 participants—
primarily individuals over 65 years—showed that reducing the dietary calcium-to-
magnesium ratio to approximately 2.3 through personalized magnesium supplementation
resulted in a 9.1% improvement in cognitive function, which was partly mediated by
epigenetic changes, particularly alterations in APOE gene methylation patterns (p = 0.03).
This improvement was modest but potentially meaningful for early cognitive decline. In
contrast, Ni et al. [159], during a 12-week intervention using magnesium L-threonate,
found no significant improvement in chronic pain, psychological symptoms, or cognitive
performance among breast cancer surgery patients, suggesting the need for more complex
therapeutic approaches.

Long-term cohort studies (Ozawa et al., [160]; Cherbuin et al., [161]) support the
association between a higher magnesium intake and a reduced dementia risk, especially for
vascular dementia. Lo et al. [162] described a non-linear relationship in postmenopausal
women, where a moderate magnesium intake was associated with a decreased incidence of
mild cognitive impairment and dementia, whereas the lowest and highest quintiles showed
no protective effect. Kimura et al. [163] linked higher consumption of vegetables—and
the associated intake of magnesium, calcium, potassium, and vitamins—to reduced risks
of dementia and Alzheimer’s disease. Similarly, Tao et al. [164] found that a higher total
magnesium intake (from the diet and supplements) was associated with a better global
cognitive performance in older adults from the U.S., particularly among women, non-
Hispanic Whites, and those with sufficient serum vitamin D levels. In a separate 6-year
follow-up study, Tao et al. [165] reported that a higher dietary magnesium intake was
linked to a lower risk of cognitive impairments in men and to a lesser extent in women,
regardless of vitamin D status.

Luo et al. [166] emphasized the importance of the calcium-to-magnesium ratio, report-
ing that a low dietary calcium and magnesium intake, and a Ca:Mg ratio ≤1.69 combined
with a high magnesium intake (>267.5 mg/day), increased dementia risk (HR = 3.97).
Tzeng et al. [167], in a 10-year study, demonstrated that magnesium oxide supplementation
significantly lowered the incidence of dementia (HR = 0.517; p = 0.001).

Zhang et al. [168] conducted a 30-day intervention in healthy adults using Magtein®

PS (400 mg of magnesium L-threonate and 50 mg of phosphatidylserine and vitamins C,
D, and B6), which yielded significant improvements across all memory domains, partic-
ularly in older participants. Data from the UK Biobank (Takeuchi et al., [169]) revealed a
non-linear relationship between nutrient intake—including magnesium—and dementia
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risk: both a very low and an excessively high magnesium intake, alongside certain lifestyle
factors, increased this risk, while a moderate, balanced nutrient intake was most protective.
In summary, magnesium intake plays a critical role in maintaining cognitive function and
preventing dementia, particularly in older adults. Achieving the optimal effects requires
maintaining a balanced calcium-to-magnesium ratio, as both insufficient and excessive
magnesium intake may elevate dementia risk. Alterations in the Ca2+:Mg2+ ratio may
contribute to cognitive decline by disrupting calcium signaling, which affects neuronal
excitability, gene expression (including APOE methylation), and energy metabolism [151].
Lowering this ratio through an increased magnesium intake may help restore neurophys-
iological balance and support cognitive function. Magnesium L-threonate formulations
(e.g., Magtein® PS) show promising results in improving memory functions, especially
among healthy elderly populations [168]. However, in certain groups—such as patients
with chronic pain or psychological symptoms—magnesium supplementation alone may be
insufficient, necessitating more comprehensive therapeutic strategies. Long-term prospec-
tive studies corroborate magnesium’s neuroprotective role, while the interplay of nutrients
and lifestyle factors is also crucial to reducing dementia risk. Table 5 summarizes key
studies investigating the role of magnesium and dietary factors in dementia risk and
cognitive decline.

Table 5. A summary of the studies investigating the role of magnesium and the diet in dementia and
cognitive decline.

Study
(Ref.) Intervention Duration Participants Outcomes

Measured Key Findings
Cognitive
Outcome
Measures

Alam et al.
[155]

Baseline serum
magnesium levels 24 years

12,040
dementia-free

adults

Dementia
incidence;
cognitive
function

Lowest serum
magnesium quintile

linked to a 24% higher
dementia risk

(HR = 1.24); no link
with cognitive
decline rates

Dementia
incidence,

DWRT, DSST,
WFT

Zhu
et al. [151]

Oral personalized
magnesium

supplementation
vs. a placebo

12 weeks
250 (subgroup
>65 years, high
Ca:Mg ratios)

Cognition;
APOE gene
methylation

Reducing Ca:Mg to
~2.3 improved

cognition by 9.1%
(p = 0.03), mediated

partly by
epigenetic changes

MoCA

Ni
et al. [159]

Oral
Mg-L-threonate
(1.2 g/day) vs.

a placebo

12 weeks;
3- and

6-month
follow-up

109 post-breast
cancer surgery

patients

Pain, mood,
sleep, cognition

No significant benefits
in terms of pain, mood,

sleep, or cognition;
combination

therapies suggested

TICS

Ozawa
et al. [160]

Dietary intake of
K, Ca, and Mg

(FFQ)

17 years of
follow-up

1081 Japanese
adults ≥60,

dementia-free

Incidence of
all-cause
dementia,
VaD, AD

Higher intake of K, Ca,
and Mg linked to a

lower risk of all-cause
dementia and vascular

dementia; no link
with AD

Incidence of
dementia, AD,

and VaD
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Table 5. Cont.

Study
(Ref.) Intervention Duration Participants Outcomes

Measured Key Findings
Cognitive
Outcome
Measures

Cherbuin
et al. [161]

Dietary intake of
Mg, K, Fe

(questionnaire)

8 years of
follow-up

1406 cognitively
healthy adults

(mean age:
62.5)

Risk of MCI
and mild
cognitive
disorders

Higher Mg intake
associated with

reduced MCI/MCD
risk; higher K and Fe

intake linked to
increased risk

MMSE

Lo
et al. [162]

Dietary and
supplemental Mg

intake (FFQ)

>20 years of
follow-up

6473 post-
menopausal

women
(65–79 years)

Physician-
adjudicated

MCI and
probable

dementia (PD)

Moderate Mg intake
(Q2–Q5) associated
with a lower risk of

MCI and PD;
non-linear relationship,

no significant effect
at extremes

Modified
MMSE

Kimura
et al. [163]

Dietary intake of
vegetables, fruits,

and nutrients
(FFQ)

24 years
1071 Japanese

adults ≥60,
dementia-free

Incident
dementia,
AD, VaD

Higher vegetable
intake linked to a 27%
lower dementia risk
and a 31% lower AD
risk; no association

with VaD; higher Mg,
Ca, K, vitamin A and C,
and riboflavin intake
also protective; fruit
intake not significant

Incidence of
dementia, AD,

and VaD

Tao et
al. [164]

Total magnesium
intake (diet +
supplements)

NHANES
2011–2014

2508 adults
≥60 years

Global
cognitive

z-scores; serum
vitamin D

levels

Higher magnesium
intake linked to better
cognition, especially in
women, non-Hispanic
Whites, and those with

sufficient
vitamin D levels

CERAD, AF,
DSST

Tao
et al. [165]

Dietary
magnesium
intake (FFQ)

6 years 5663 adults
≥55 years

Cognitive tests
(MMSE, DSST,

CDT);
impairment risk

Higher intake linked to
a lower cognitive

impairment risk in
men (MMSE, DSST); in

women, only MMSE
results were significant.

This effect was
independent of

vitamin D in men.

MMSE, DSST,
CDT

Luo
et al. [166]

Dietary Ca, Mg,
and Ca:Mg
ratio (FFQ)

5 years

1565
dementia-free
urban older

adults

Incident
dementia
(DSM-IV)

Lowest tertile for Ca
(<339.1 mg/day) and
Mg (<202.1 mg/day)
intake linked to the

highest dementia risk;
in the subgroup with
Ca:Mg ≤1.69, a Mg

intake >267.5 mg/day
increased dementia

risk (HR:
3.97)—highlights the

importance of
Ca:Mg balance

MMSE,
Conflicting
Instructions
Task, Stick

Design Test,
modified
Common

Objects Sorting
Test, Auditory

Verbal Learning
Test, modified

Fuld Object
Memory

Evaluation, and
Trail Making
Test Parts A

and B
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Table 5. Cont.

Study
(Ref.) Intervention Duration Participants Outcomes

Measured Key Findings
Cognitive
Outcome
Measures

Tzeng
et al. [167]

Oral magnesium
oxide (MgO) use

vs. no use
10 years

1547 MgO users
vs. 4641
matched
controls

(≥50 years)

Incidence of
dementia (Cox

regression)

MgO users showed a
significantly lower

dementia risk (adjusted
HR: 0.517, p = 0.001)

Incidence of
AD, VaD, and

non-VaD

Zhang
et al. [168]

Oral magnesium
L-threonate

(Magtein® PS:
400 mg Mg

L-threonate +
phosphatidylser-
ine + vitamins C,

D, B6)

30 days
109 healthy

Chinese adults
(18–65 years)

Clinical
Memory Test
(5 subtests +

memory
quotient

The Magtein®PS group
showed significant

improvements in all
memory domains;

older adults
benefited most.

The Clinical
Memory Test

Takeuchi
et al. [169]

Web-based 24 h
dietary

assessment of
macronutrients
and minerals

(alcohol, sugars,
fats, magnesium,

protein)

12 years

161,376
middle-aged
and older UK
adults (the UK

Biobank cohort)

Incidence of
all-cause
dementia
(hospital

records, death
registry)

Higher dementia risk
associated with no

alcohol intake and high
sugar/carbohydrate,

very low/high fat, very
low/high Mg, and the
highest protein intake;
moderate intake linked

to lower risk

Dementia
incidence

Cohen-
Hagai

et al. [170]

Oral magnesium
oxide (520 mg) vs.

a placebo
8 weeks

29 outpatients
with liver
cirrhosis

Serum/intracellular
Mg; cognition

83% had cognitive
impairments; cognitive
scores correlated with

Mg levels

The MoCA, the
CCT, digit span
examinations,

and the
Lowenstein

Occupational
Cognitive

Assessment

Alateeq
et al. [171]

Dietary
magnesium
intake (24 h

recall); latent
trajectory
analysis

17 years
6001

individuals
aged 40–73

Brain volumes
(GM, WM,

hippocampus),
white matter

lesions (WMLs),
blood pressure

Higher Mg intake
associated with larger

brain volumes and
fewer WMLs,
especially in

post-menopausal
women; BP did not
mediate outcomes

Brain volumes
(GM, WM,
LHC, RHC,

WMLs)

Abbreviations: Mg: Magnesium; Ca: Calcium; K: Potassium; Fe: Iron; FFQ: Food Frequency Questionnaire; APOE:
Apolipoprotein E Gene; MHE: Minimal Hepatic Encephalopathy; MCI: Mild Cognitive Impairment; MCD: Mild
Cognitive Disorder; PD: Probable Dementia; AD: Alzheimer’s Disease; VaD: Vascular Dementia; HR: Hazard
Ratio; MgO: Magnesium Oxide; GM: Gray Matter; WM: White Matter; WMLs: White Matter Lesions; BP: Blood
Pressure; DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; GAD-7: Generalized
Anxiety Disorder 7-Item Scale; PHQ-9: Patient Health Questionnaire, 9-Item (Depression Scale); PSQI: Pittsburgh
Sleep Quality Index; SF-MPQ: Short-Form McGill Pain Questionnaire; TICS: Telephone Interview for Cognitive
Status; MMSE: Mini-Mental State Examination; DSST: Digit Symbol Substitution Test; DWRT: Delayed Word
Recall Test; WFT: Word Fluency Test; MoCA: Montreal Cognitive Assessment; CERAD: Consortium to Establish a
Registry for Alzheimer’s Disease; AF: Animal Fluency; CDT: Clock Drawing Test; CCT: Clock Completion Test.

7. Prevention, Therapy, and Neurological Disorders: A Scientific
Discussion on the Role of Magnesium

The current scientific evidence increasingly supports the view that magnesium plays a
key role in the pathophysiology, prevention, and potential treatment of several neurological
and psychiatric conditions [135]. A growing body of literature links magnesium status to
disorders such as depression, migraine, and dementia and various forms of neurodegener-



Nutrients 2025, 17, 2216 17 of 27

ation [4,6,118,148]. Both epidemiological and experimental data suggest that magnesium
deficiency—either as a cause or a consequence—may significantly contribute to the onset
and progression of these diseases [6,148].

In the case of depression, multiple observational studies have demonstrated a correla-
tion between low serum magnesium levels and depressive symptoms [21–23]. Magnesium
is known to regulate key neurotransmitters such as serotonin and GABA and also modulate
the HPA axis and NMDA receptor activity—mechanisms that are dysregulated in depres-
sion [172]. Interventional studies using magnesium supplementation, particularly with
magnesium glycinate or magnesium L-threonate, have shown symptom improvements
in mild to moderate depression, though the results remain mixed due to variations in the
sample sizes, dosages, and treatment durations [173]. Despite this heterogeneity, magne-
sium is increasingly viewed as a potential adjunctive therapy, especially in patients with
documented magnesium deficiency or a poor response to standard antidepressants [3].

In migraine prophylaxis, oral magnesium supplementation—often in the form of mag-
nesium citrate or magnesium oxide—has demonstrated efficacy in reducing the frequency
and severity of attacks, particularly among patients experiencing migraine with aura [29].
Magnesium appears to inhibit cortical spreading depression and stabilize vascular tone,
which are both implicated in migraine’s pathophysiology [109]. However, studies on
intravenous magnesium sulfate supplementation for acute migraine attacks have yielded
conflicting results [30,111]. While some randomized trials reported rapid pain relief fol-
lowing infusion, others found no significant benefit compared to that under a placebo
or the conventional treatments [111,113,115]. These discrepancies may be attributable to
differences in magnesium’s bioavailability, the timing of administration, or underlying
migraine subtypes.

In the context of dementia, especially Alzheimer’s disease, magnesium is emerging
as a key player in cognitive health and neuroprotection [6,148]. Epidemiological studies
have identified a U-shaped relationship between serum magnesium levels and dementia
risk: both hypomagnesemia and hypermagnesemia appear to increase the likelihood of
cognitive decline [156]. The optimal serum range associated with a lower dementia risk
is estimated at 0.80–0.89 mmol/L [150]. Preclinical studies further show that magnesium
supplementation can improve synaptic plasticity and dendritic spine morphology and
reduce tau hyperphosphorylation, one of the hallmarks of Alzheimer’s pathology [135].
While magnesium has shown potential neuroprotective effects, several studies have re-
ported no significant cognitive benefit, particularly in the advanced stages of Alzheimer’s
disease [169].

Intracellular magnesium exerts its neuroprotective effects through multiple mecha-
nisms: it modulates calcium homeostasis, reduces oxidative stress, attenuates neuroin-
flammation, and enhances the ATP production in the mitochondria [135]. For example, in
animal models, magnesium L-threonate increased brain magnesium levels and reversed
cognitive deficits by promoting synaptic density [174]. Moreover, magnesium supplemen-
tation has been shown to inhibit the activation of the NF-κB pathway, thereby reducing
pro-inflammatory cytokine production, which is known to contribute to neurodegenerative
progression [175].

Despite compelling preclinical evidence, translating magnesium’s neuroprotective
effects into clinical practice is complex [135]. Factors such as blood–brain barrier perme-
ability, magnesium’s bioavailability, and individual metabolic differences can influence
the therapeutic outcomes [4]. Furthermore, the form of magnesium, its dosage, and the
treatment duration are not standardized across studies, making cross-comparisons difficult.
Different magnesium salts have varying bioavailability, which can affect both its absorption
and the therapeutic outcomes. Patients with acute neurological conditions (e.g., stroke,
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traumatic brain injury) may not benefit substantially from magnesium therapy due to its
slow cellular uptake and the narrow therapeutic window in such emergencies [176,177].
In contrast, chronic neurodegenerative disorders present a more favorable context for sus-
tained magnesium intervention [6]. There is also emerging interest in magnesium’s indirect
cognitive benefits, such as through improved sleep regulation and anxiolytic effects, both
of which influence long-term cognitive resilience [178]. Additionally, magnesium may
modulate nitric oxide synthesis, thereby improving cerebral perfusion, another critical
factor in cognitive preservation [135].

Magnesium represents a promising, multifaceted agent in the context of neurological
and psychiatric disorders [145]. Its role as a neuroprotective nutrient is supported by
experimental and epidemiological findings, although robust, long-term clinical trials are
needed to determine its therapeutic potential across specific patient populations. While
not yet established as a first-line treatment, magnesium supplementation may hold clinical
utility as an adjunctive strategy, particularly in individuals with a suboptimal magnesium
status or a heightened neuroinflammatory burden [135].

8. Recommendations and Future Directions
To clarify the therapeutic potential of magnesium in neurological disorders further,

future research should prioritize the implementation of standardized protocols, ensuring
consistency in the dosages, treatment durations, and outcome measures. Long-term follow-
up studies are essential to evaluate its sustained efficacy and safety across different clinical
scenarios. Comparative analyses across diverse populations would also provide valuable
insights into demographic or genetic factors that may influence magnesium metabolism and
the treatment response. Additionally, a deeper exploration of the intracellular mechanisms
of magnesium’s action is warranted to understand its role at the cellular and molecular lev-
els better. Investigating the potential for personalized magnesium supplementation—based
on genetic and epigenetic markers—may offer a path toward optimizing its therapeutic
efficacy and tailoring interventions to individual patient profiles.

9. Limitations
When interpreting the available data on magnesium’s role in neurological disorders,

several critical limitations must be acknowledged. First, there is considerable heterogeneity
among studies in terms of the methodology, the magnesium dosage, the duration of the
intervention, and participant characteristics (e.g., age, comorbidities). The magnesium
dosages and administrative routes also varied greatly across the included studies, which
may have affected the bioavailability of magnesium. This diversity complicates direct
comparisons and limits the generalizability of the findings. Moreover, many studies have
involved small sample sizes and relatively short follow-up periods, raising concerns about
the robustness and long-term sustainability of the observed effects. The presence of comor-
bidities and the frequent use of combined therapeutic approaches—such as concurrent phar-
macological treatments, vitamin supplementation, or lifestyle modifications—confound
the ability to isolate the specific impact of magnesium further. Another methodological
concern is the predominant reliance on serum magnesium levels, which may not accurately
reflect magnesium status at the intracellular level, where many of its physiological actions
occur. Furthermore, the lack of consistent reporting of pre-treatment serum magnesium
levels in many clinical trials makes it difficult to determine whether therapeutic effects
are dependent on baseline deficiency. Lastly, many of the outcomes, particularly those re-
lated to psychological symptoms, were assessed using self-reported questionnaires. These
tools are inherently susceptible to placebo effects and subjective biases, which may have
influenced the perceived efficacy of magnesium supplementation.
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10. Conclusions
In summary, magnesium plays a significant role in both the prevention and adjunctive

management of neurological disorders. Based on the current body of evidence, magnesium
supplementation may offer a promising therapeutic option in the treatment of depression,
particularly in mild to moderate cases. However, further well-designed, large-scale, and
long-term clinical trials are required to refine the clinical recommendations and determine
the precise conditions under which magnesium exerts its beneficial effects. In the con-
text of migraine, magnesium—especially when used prophylactically—has demonstrated
efficacy and safety, notably in patients experiencing aura. Nonetheless, its role in acute
treatment remains less clearly defined, as intravenous administration has yielded mixed
results across studies. Regarding dementia and Alzheimer’s disease, maintaining adequate
magnesium levels appears to be of preventive value, especially in older adults and indi-
viduals with metabolic risk factors. The optimal magnesium status may contribute to a
reduction in neurodegenerative processes due to its antioxidant, anti-inflammatory, and
neuroprotective mechanisms.
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Zaleska, M. Effects of Magnesium Supplementation on Unipolar Depression: A Placebo-Controlled Study and Review of the
Importance of Dosing and Magnesium Status in the Therapeutic Response. Nutrients 2018, 10, 1014. [CrossRef] [PubMed]

23. Tarleton, E.K.; Littenberg, B.; MacLean, C.D.; Kennedy, A.G.; Daley, C. Role of magnesium supplementation in the treatment of
depression: A randomized clinical trial. PLoS ONE 2017, 12, e0180067. [CrossRef] [PubMed]

24. Quan, Z.; Li, H.; Quan, Z.; Qing, H. Appropriate macronutrients or mineral elements are beneficial to improve depression and
reduce the risk of depression. Int. J. Mol. Sci. 2023, 24, 7098. [CrossRef] [PubMed]

25. Eby III, G.A.; Eby, K.L. Magnesium for treatment-resistant depression: A review and hypothesis. Med. Hypotheses 2010, 74,
649–660. [CrossRef]

26. Firth, J.; Teasdale, S.B.; Allott, K.; Siskind, D.; Marx, W.; Cotter, J.; Veronese, N.; Schuch, F.; Smith, L.; Solmi, M. The efficacy and
safety of nutrient supplements in the treatment of mental disorders: A meta-review of meta-analyses of randomized controlled
trials. World Psychiatry 2019, 18, 308–324. [CrossRef]

27. Silberstein, S. Migraine pathophysiology and its clinical implications. Cephalalgia 2004, 24, 2–7. [CrossRef]
28. Dolati, S.; Rikhtegar, R.; Mehdizadeh, A.; Yousefi, M. The role of magnesium in pathophysiology and migraine treatment. Biol.

Trace Elem. Res. 2020, 196, 375–383. [CrossRef]
29. Dominguez, L.J.; Veronese, N.; Sabico, S.; Al-Daghri, N.M.; Barbagallo, M. Magnesium and Migraine. Nutrients 2025, 17, 725.

[CrossRef]
30. Chiu, H.-Y.; Yeh, T.-H.; Yin-Cheng, H.; Pin-Yuan, C. Effects of intravenous and oral magnesium on reducing migraine: A meta-

analysis of randomized controlled trials. Pain. Physician 2016, 19, E97.
31. Freedman, V.A.; Cornman, J.C. Dementia Prevalence, Incidence, and Mortality Trends Among U.S. Adults Ages 72 and Older,

2011–2021. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, S22–S31. [CrossRef]
32. Sanfilippo, C.; Castrogiovanni, P.; Vinciguerra, M.; Imbesi, R.; Ulivieri, M.; Fazio, F.; Blennow, K.; Zetterberg, H.; Di Rosa, M. A

sex-stratified analysis of neuroimmune gene expression signatures in Alzheimer’s disease brains. Geroscience 2023, 45, 523–541.
[CrossRef] [PubMed]

https://doi.org/10.1007/s11357-024-01243-8
https://doi.org/10.1016/j.bbr.2017.12.025
https://doi.org/10.1093/gerona/glad129
https://doi.org/10.1007/s11357-025-01518-8
https://doi.org/10.1007/s11357-024-01443-2
https://www.ncbi.nlm.nih.gov/pubmed/39607591
https://doi.org/10.1007/s11357-024-01282-1
https://www.ncbi.nlm.nih.gov/pubmed/39023667
https://doi.org/10.1007/s11357-023-01030-x
https://www.ncbi.nlm.nih.gov/pubmed/38097855
https://doi.org/10.1007/s11357-024-01359-x
https://doi.org/10.1007/s11357-024-01372-0
https://doi.org/10.1007/s11357-022-00642-z
https://doi.org/10.1007/s11357-021-00406-1
https://doi.org/10.1007/s11357-020-00285-y
https://doi.org/10.1016/S1734-1140(13)71032-6
https://doi.org/10.1179/1476830512Y.0000000044
https://doi.org/10.3390/nu10081014
https://www.ncbi.nlm.nih.gov/pubmed/30081500
https://doi.org/10.1371/journal.pone.0180067
https://www.ncbi.nlm.nih.gov/pubmed/28654669
https://doi.org/10.3390/ijms24087098
https://www.ncbi.nlm.nih.gov/pubmed/37108261
https://doi.org/10.1016/j.mehy.2009.10.051
https://doi.org/10.1002/wps.20672
https://doi.org/10.1111/j.1468-2982.2004.00892.x
https://doi.org/10.1007/s12011-019-01931-z
https://doi.org/10.3390/nu17040725
https://doi.org/10.1093/gerona/glae105
https://doi.org/10.1007/s11357-022-00664-7
https://www.ncbi.nlm.nih.gov/pubmed/36136224


Nutrients 2025, 17, 2216 21 of 27

33. van Setten, A.; Uleman, J.F.; Melis, R.J.F.; Lawlor, B.; Riksen, N.P.; Claassen, J.; de Heus, R.A.A.; Group, N.S. No association
between markers of systemic inflammation and endothelial dysfunction with Alzheimer’s disease progression: A longitudinal
study. Geroscience 2024, 47, 1–12. [CrossRef] [PubMed]

34. DeVries, S.A.; Conner, B.; Dimovasili, C.; Moore, T.L.; Medalla, M.; Mortazavi, F.; Rosene, D.L. Immune proteins C1q and
CD47 may contribute to aberrant microglia-mediated synapse loss in the aging monkey brain that is associated with cognitive
impairment. Geroscience 2024, 46, 2503–2519. [CrossRef]

35. Andonian, B.J.; Hippensteel, J.A.; Abuabara, K.; Boyle, E.M.; Colbert, J.F.; Devinney, M.J.; Faye, A.S.; Kochar, B.; Lee, J.;
Litke, R.; et al. Inflammation and aging-related disease: A transdisciplinary inflammaging framework. Geroscience 2024, 47,
515–542. [CrossRef]

36. Fan, Z.; Zhang, X.; Zhao, S.; Zhong, S.; Li, Z.; Yan, Y.; Zhang, B.; Chen, Y. Interferon Regulatory Factor 5 Regulates the Phagocytosis
of Microglia and Alleviate Alzheimer’s Pathology. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae031. [CrossRef]

37. Giudici, K.V.; de Souto Barreto, P.; Guyonnet, S.; Morley, J.E.; Nguyen, A.D.; Aggarwal, G.; Parini, A.; Li, Y.; Bateman,
R.J.; Vellas, B.; et al. TNFR-1 and GDF-15 Are Associated With Plasma Neurofilament Light Chain and Progranulin Among
Community-Dwelling Older Adults: A Secondary Analysis of the MAPT Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 569–578.
[CrossRef]

38. Ayyanar, M.P.; Vijayan, M. A review on gut microbiota and miRNA crosstalk: Implications for Alzheimer’s disease. Geroscience
2024, 47, 1–47. [CrossRef]

39. Prajapati, S.K.; Shah, R.; Alford, N.; Mishra, S.P.; Jain, S.; Hansen, B.; Sanberg, P.; Molina, A.J.A.; Yadav, H. The Triple Alliance:
Microbiome, Mitochondria, and Metabolites in the Context of Age-Related Cognitive Decline and Alzheimer’s Disease. J. Gerontol.
A Biol. Sci. Med. Sci. 2023, 78, 2187–2202. [CrossRef]

40. Luo, H.; Wu, B.; Gonzalez, H.M.; Stickel, A.; Kaste, L.M.; Tarraf, W.; Daviglus, M.L.; Sanders, A.E.; Cai, J. Tooth Loss, Periodontal
Disease, and Mild Cognitive Impairment Among Hispanic/Latino Immigrants: The Moderating Effects of Age at Immigration.
J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 949–957. [CrossRef]

41. Pszczolowska, M.; Walczak, K.; Miskow, W.; Mroziak, M.; Chojdak-Lukasiewicz, J.; Leszek, J. Mitochondrial disorders leading to
Alzheimer’s disease-perspectives of diagnosis and treatment. Geroscience 2024, 46, 2977–2988. [CrossRef]

42. Kugler, B.A.; Lysaker, C.R.; Franczak, E.; Hauger, B.M.; Csikos, V.; Stopperan, J.A.; Allen, J.A.; Stanford, J.A.; Koch, L.G.; Britton,
S.L.; et al. Intrinsic aerobic capacity modulates Alzheimer’s disease pathological hallmarks, brain mitochondrial function and
proteome during aging. Geroscience 2024, 46, 4955–4967. [CrossRef] [PubMed]

43. Seman, A.; Chandra, P.K.; Byrum, S.D.; Mackintosh, S.G.; Gies, A.J.; Busija, D.W.; Rutkai, I. Targeting mitochondria in the aged
cerebral vasculature with SS-31, a proteomic study of brain microvessels. Geroscience 2023, 45, 2951–2965. [CrossRef] [PubMed]

44. Waigi, E.W.; Pernomian, L.; Crockett, A.M.; Costa, T.J.; Townsend, P., Jr.; Webb, R.C.; McQuail, J.A.; McCarthy, C.G.; Hollis, F.;
Wenceslau, C.F. Vascular dysfunction occurs prior to the onset of amyloid pathology and Abeta plaque deposits colocalize with
endothelial cells in the hippocampus of female APPswe/PSEN1dE9 mice. Geroscience 2024, 46, 5517–5536. [CrossRef] [PubMed]

45. Fang, X.; Tang, C.; Zhang, H.; Border, J.J.; Liu, Y.; Shin, S.M.; Yu, H.; Roman, R.J.; Fan, F. Longitudinal characterization of cerebral
hemodynamics in the TgF344-AD rat model of Alzheimer’s disease. Geroscience 2023, 45, 1471–1490. [CrossRef]

46. Fang, X.; Border, J.J.; Rivers, P.L.; Zhang, H.; Williams, J.M.; Fan, F.; Roman, R.J. Amyloid beta accumulation in TgF344-AD rats is
associated with reduced cerebral capillary endothelial Kir2.1 expression and neurovascular uncoupling. Geroscience 2023, 45,
2909–2926. [CrossRef]

47. Csiszar, A.; Ungvari, A.; Patai, R.; Gulej, R.; Yabluchanskiy, A.; Benyo, Z.; Kovacs, I.; Sotonyi, P.; Kirkpartrick, A.C.; Prodan, C.I.;
et al. Atherosclerotic burden and cerebral small vessel disease: Exploring the link through microvascular aging and cerebral
microhemorrhages. Geroscience 2024, 46, 5103–5132. [CrossRef]

48. Ting, K.K.; Coleman, P.; Kim, H.J.; Zhao, Y.; Mulangala, J.; Cheng, N.C.; Li, W.; Gunatilake, D.; Johnstone, D.M.; Loo, L.; et al.
Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer’s disease models.
Geroscience 2023, 45, 3307–3331. [CrossRef]

49. Nyul-Toth, A.; Patai, R.; Csiszar, A.; Ungvari, A.; Gulej, R.; Mukli, P.; Yabluchanskiy, A.; Benyo, Z.; Sotonyi, P.; Prodan, C.I.; et al.
Linking peripheral atherosclerosis to blood-brain barrier disruption: Elucidating its role as a manifestation of cerebral small
vessel disease in vascular cognitive impairment. Geroscience 2024, 46, 6511–6536. [CrossRef]

50. Waigi, E.W.; Webb, R.C.; Moss, M.A.; Uline, M.J.; McCarthy, C.G.; Wenceslau, C.F. Soluble and insoluble protein aggregates,
endoplasmic reticulum stress, and vascular dysfunction in Alzheimer’s disease and cardiovascular diseases. Geroscience 2023, 45,
1411–1438. [CrossRef]

51. Bakhtiari, A.; Benedek, K.; Law, I.; Fagerlund, B.; Mortensen, E.L.; Osler, M.; Lauritzen, M.; Larsson, H.B.W.; Vestergaard, M.B.
Early cerebral amyloid-beta accumulation and hypermetabolism are associated with subtle cognitive deficits before accelerated
cerebral atrophy. Geroscience 2024, 46, 769–782. [CrossRef]

https://doi.org/10.1007/s11357-024-01294-x
https://www.ncbi.nlm.nih.gov/pubmed/39085534
https://doi.org/10.1007/s11357-023-01014-x
https://doi.org/10.1007/s11357-024-01364-0
https://doi.org/10.1093/gerona/glae031
https://doi.org/10.1093/gerona/glac244
https://doi.org/10.1007/s11357-024-01432-5
https://doi.org/10.1093/gerona/glad226
https://doi.org/10.1093/gerona/glac178
https://doi.org/10.1007/s11357-024-01118-y
https://doi.org/10.1007/s11357-024-01248-3
https://www.ncbi.nlm.nih.gov/pubmed/38867031
https://doi.org/10.1007/s11357-023-00845-y
https://www.ncbi.nlm.nih.gov/pubmed/37458933
https://doi.org/10.1007/s11357-024-01213-0
https://www.ncbi.nlm.nih.gov/pubmed/38862757
https://doi.org/10.1007/s11357-023-00773-x
https://doi.org/10.1007/s11357-023-00841-2
https://doi.org/10.1007/s11357-024-01139-7
https://doi.org/10.1007/s11357-023-00927-x
https://doi.org/10.1007/s11357-024-01194-0
https://doi.org/10.1007/s11357-023-00748-y
https://doi.org/10.1007/s11357-023-01031-w


Nutrients 2025, 17, 2216 22 of 27

52. van Gennip, A.C.E.; Satizabal, C.L.; Tracy, R.P.; Sigurdsson, S.; Gudnason, V.; Launer, L.J.; van Sloten, T.T. Associations of plasma
NfL, GFAP, and t-tau with cerebral small vessel disease and incident dementia: Longitudinal data of the AGES-Reykjavik Study.
Geroscience 2024, 46, 505–516. [CrossRef] [PubMed]

53. Nabizadeh, F.; Alzheimer’s disease Neuroimaging Initiative. Local molecular and connectomic contributions of tau-related
neurodegeneration. Geroscience 2024, 47, 227–246. [CrossRef] [PubMed]

54. Billaud, C.H.A.; Yu, J.; Alzheimer’s Disease Neuroimaging Initiative. Fixel-based and tensor-derived white matter abnormalities
in relation to memory impairment and neurocognitive disorders. Geroscience 2024, 47, 1–13. [CrossRef] [PubMed]

55. Zhang, H.; Cao, P.; Mak, H.K.F.; Hui, E.S. The structural-functional-connectivity coupling of the aging brain. Geroscience 2024, 46,
3875–3887. [CrossRef]

56. Yan, Y.; Gao, M.; Geng, Z.; Wu, Y.; Xiao, G.; Wang, L.; Pang, X.; Yang, C.; Zhou, S.; Li, H.; et al. Abnormal EEG microstates in
Alzheimer’s disease: Predictors of beta-amyloid deposition degree and disease classification. Geroscience 2024, 46, 4779–4792.
[CrossRef]

57. Wojtecki, L.; Cont, C.; Stute, N.; Galli, A.; Schulte, C.; Trenado, C. Electrical brain networks before and after transcranial pulsed
shockwave stimulation in Alzheimer’s patients. Geroscience 2024, 47, 953–964. [CrossRef]

58. Williamson, J.N.; James, S.A.; Mullen, S.P.; Sutton, B.P.; Wszalek, T.; Mulyana, B.; Mukli, P.; Yabluchanskiy, A.; Alzheimer’s Disease
Neuroimaging Initiative Consortium; Yang, Y. Sex differences in interacting genetic and functional connectivity biomarkers in
Alzheimer’s disease. Geroscience 2024, 46, 6071–6084. [CrossRef]

59. Williamson, J.; James, S.A.; Mukli, P.; Yabluchanskiy, A.; Wu, D.H.; Sonntag, W.; Alzheimer’s Disease Neuroimaging Initiative, C.;
Yang, Y. Sex difference in brain functional connectivity of hippocampus in Alzheimer’s disease. Geroscience 2024, 46, 563–572.
[CrossRef]

60. Garcia-Colomo, A.; Nebreda, A.; Carrasco-Gomez, M.; de Frutos-Lucas, J.; Ramirez-Torano, F.; Spuch, C.; Comis-Tuche, M.; Bruna,
R.; Alfonsin, S.; Maestu, F. Longitudinal changes in the functional connectivity of individuals at risk of Alzheimer’s disease.
Geroscience 2024, 46, 2989–3003. [CrossRef]

61. Morrison, C.; Dadar, M.; Kamal, F.; Collins, D.L.; Alzheimer’s Disease Neuroimaging Initiative. Differences in Alzheimer’s
Disease-Related Pathology Profiles Across Apolipoprotein Groups. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad254. [CrossRef]

62. Rasmussen, L.T.; de Labio, R.W.; Dos Santos, M.P.; Fredi, B.M.; Baisi Chagas, E.F.; Chen, E.S.; Turecki, G.; Smith, M.A.C.; Payao,
S.L.M. Changes in Expression of Key Genes in Alzheimer’s Disease: A Specific Brain Tissue Change. J. Gerontol. A Biol. Sci. Med.
Sci. 2024, 79, glae023. [CrossRef] [PubMed]

63. Li, Y.; Zeng, Z.; Zhuang, Z.; Zhao, Y.; Zhang, L.; Wang, W.; Song, Z.; Dong, X.; Xiao, W.; Huang, N.; et al. Polysocial and Polygenic
Risk Scores and All-Cause Dementia, Alzheimer’s Disease, and Vascular Dementia. J. Gerontol. A Biol. Sci. Med. Sci. 2024,
79, glad262. [CrossRef] [PubMed]

64. Qian, S.; Zheng, Y.; Jiang, T.; Hou, J.; Cao, R.; Cai, J.; Ma, E.; Wang, W.; Song, W.; Xie, C. A Risk Variant rs6922617 in TREM Is
Discrepantly Associated With Defining Neuropathological Hallmarks in the Alzheimer’s Continuum. J. Gerontol. A Biol. Sci. Med.
Sci. 2024, 79, glae185. [CrossRef] [PubMed]

65. Zhao, W.; Smith, J.A.; Wang, Y.Z.; Chintalapati, M.; Ammous, F.; Yu, M.; Moorjani, P.; Ganna, A.; Gross, A.; Dey, S.; et al. Polygenic
Risk Scores for Alzheimer’s Disease and General Cognitive Function Are Associated With Measures of Cognition in Older South
Asians. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 743–752. [CrossRef]

66. Zhou, S.; Ma, G.; Luo, H.; Shan, S.; Xiong, J.; Cheng, G. Identification of 5 Potential Predictive Biomarkers for Alzheimer’s Disease
by Integrating the Unified Test for Molecular Signatures and Weighted Gene Coexpression Network Analysis. J. Gerontol. A Biol.
Sci. Med. Sci. 2023, 78, 653–658. [CrossRef]

67. Kim, Y.; Wang, M.; Sharp, S.J.; Au Yeung, S.L.; Luo, S.; Jang, H.; Jiesisibieke, Z.L.; Shi, Q.; Chen, Z.; Brage, S. Incidence of Dementia
and Alzheimer’s Disease, Genetic Susceptibility, and Grip Strength Among Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2024,
79, glad224. [CrossRef]

68. Zapater-Fajari, M.; Diaz-Galvan, P.; Cedres, N.; Rydberg Sterner, T.; Ryden, L.; Sacuiu, S.; Waern, M.; Zettergren, A.; Zetterberg, H.;
Blennow, K.; et al. Biomarkers of Alzheimer’s Disease and Cerebrovascular Disease in Relation to Depressive Symptomatology in
Individuals With Subjective Cognitive Decline. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad216. [CrossRef]

69. Guo, J.; Marseglia, A.; Shang, Y.; Dove, A.; Grande, G.; Fratiglioni, L.; Xu, W. Association Between Late-Life Weight Change and
Dementia: A Population-based Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 143–150. [CrossRef]

70. Ha, J.; Kwak, S.; Kim, K.Y.; Kim, H.; Cho, S.Y.; Kim, M.; Lee, J.Y.; Kim, E. Relationship Between Adipokines, Cognition, and Brain
Structures in Old Age Depending on Obesity. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 120–128. [CrossRef]

71. Lerfald, M.; Allore, H.; Nilsen, T.I.L.; Eldholm, R.S.; Martinez-Velilla, N.; Selbaek, G.; Ernstsen, L. Longitudinal Patterns of Systolic
Blood Pressure, Diastolic Blood Pressure, Cardiorespiratory Fitness, and Their Association With Dementia Risk: The HUNT
Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae161. [CrossRef]

https://doi.org/10.1007/s11357-023-00888-1
https://www.ncbi.nlm.nih.gov/pubmed/37530894
https://doi.org/10.1007/s11357-024-01339-1
https://www.ncbi.nlm.nih.gov/pubmed/39343862
https://doi.org/10.1007/s11357-024-01340-8
https://www.ncbi.nlm.nih.gov/pubmed/39271569
https://doi.org/10.1007/s11357-024-01106-2
https://doi.org/10.1007/s11357-024-01181-5
https://doi.org/10.1007/s11357-024-01305-x
https://doi.org/10.1007/s11357-024-01151-x
https://doi.org/10.1007/s11357-023-00943-x
https://doi.org/10.1007/s11357-023-01036-5
https://doi.org/10.1093/gerona/glad254
https://doi.org/10.1093/gerona/glae023
https://www.ncbi.nlm.nih.gov/pubmed/38267766
https://doi.org/10.1093/gerona/glad262
https://www.ncbi.nlm.nih.gov/pubmed/37966923
https://doi.org/10.1093/gerona/glae185
https://www.ncbi.nlm.nih.gov/pubmed/39051708
https://doi.org/10.1093/gerona/glad057
https://doi.org/10.1093/gerona/glac179
https://doi.org/10.1093/gerona/glad224
https://doi.org/10.1093/gerona/glad216
https://doi.org/10.1093/gerona/glac157
https://doi.org/10.1093/gerona/glac021
https://doi.org/10.1093/gerona/glae161


Nutrients 2025, 17, 2216 23 of 27

72. Beydoun, H.A.; Szymkowiak, D.; Kinney, R.; Beydoun, M.A.; Zonderman, A.B.; Tsai, J. Is the Risk of Alzheimer’s Disease and
Related Dementias Among U.S. Veterans Influenced by the Intersectionality of Housing Status, HIV/AIDS, Hepatitis C, and
Psychiatric Disorders? J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae153. [CrossRef] [PubMed]

73. Aravena, J.M.; Lee, J.; Schwartz, A.E.; Nyhan, K.; Wang, S.Y.; Levy, B.R. Beneficial Effect of Societal Factors on APOE-epsilon2 and
epsilon4 Carriers’ Brain Health: A Systematic Review. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad237. [CrossRef] [PubMed]

74. Aiken-Morgan, A.T.; Capuano, A.W.; Wilson, R.S.; Barnes, L.L. Changes in Body Mass Index and Incident Mild Cognitive
Impairment Among African American Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad263. [CrossRef] [PubMed]

75. Buchman, A.S.; Capuano, A.W.; VanderHorst, V.; Wilson, R.S.; Oveisgharan, S.; Schneider, J.A.; Bennett, D.A. Brain beta-Amyloid
Links the Association of Change in Body Mass Index With Cognitive Decline in Community-Dwelling Older Adults. J. Gerontol.
A Biol. Sci. Med. Sci. 2023, 78, 277–285. [CrossRef]

76. Campbell, E.B.; Delgadillo, M.; Lazzeroni, L.C.; Louras, P.N.; Myers, J.; Yesavage, J.; Fairchild, J.K. Cognitive Improvement
Following Physical Exercise and Cognitive Training Intervention for Older Adults With MCI. J. Gerontol. A Biol. Sci. Med. Sci.
2023, 78, 554–560. [CrossRef]

77. Chang, Y.K.; Etnier, J.L.; Li, R.H.; Ren, F.F.; Ai, J.Y.; Chu, C.H. Acute Exercise Effect on Neurocognitive Function Among
Cognitively Normal Late-Middle-Aged Adults With/Without Genetic Risk of AD: The Moderating Role of Exercise Volume and
APOE Genotype. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad179. [CrossRef]

78. Grande de Franca, N.A.; Diaz, G.; Lengele, L.; Soriano, G.; Caspar-Bauguil, S.; Saint-Aubert, L.; Payoux, P.; Rouch, L.; Vellas, B.;
de Souto Barreto, P.; et al. Associations Between Blood Nutritional Biomarkers and Cerebral Amyloid-beta: Insights From the
COGFRAIL Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad248. [CrossRef]

79. Kallianpur, K.J.; Masaki, K.H.; Chen, R.; Willcox, B.J.; Allsopp, R.C.; Davy, P.; Dodge, H.H. Weak Social Networks in Late Life
Predict Incident Alzheimer’s Disease: The Kuakini Honolulu-Asia Aging Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 663–672.
[CrossRef]

80. Lange-Maia, B.S.; Wagner, M.; Rogers, C.A.; Mehta, R.I.; Bennett, D.A.; Tangney, C.; Schoeny, M.E.; Halloway, S.; Arvanitakis, Z.
Profiles of Lifestyle Health Behaviors and Postmortem Dementia-Related Neuropathology. J. Gerontol. A Biol. Sci. Med. Sci. 2024,
79, glae100. [CrossRef]

81. Marino, F.R.; Deal, J.A.; Dougherty, R.J.; Bilgel, M.; Tian, Q.; An, Y.; Simonsick, E.M.; Resnick, S.M.; Ferrucci, L.; Spira, A.P.; et al.
Differences in Daily Physical Activity by Alzheimer’s Risk Markers Among Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2024,
79, glae119. [CrossRef]

82. Morita, A.; Fujiwara, T.; Murayama, H.; Machida, M.; Inoue, S.; Shobugawa, Y. Association Between Trajectory of Socioeconomic
Position and Regional Brain Volumes Related to Dementia: Results From the NEIGE Study. J. Gerontol. A Biol. Sci. Med. Sci. 2024,
79, glad269. [CrossRef] [PubMed]

83. Chen, G.C.; Nyarko Hukportie, D.; Wan, Z.; Li, F.R.; Wu, X.B. The Association Between Exposure to Air Pollution and Dementia
Incidence: The Modifying Effect of Smoking. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 2309–2317. [CrossRef] [PubMed]

84. Delcourt, N.; Pouget, A.M.; Grivaud, A.; Nogueira, L.; Larvor, F.; Marchand, P.; Schmidt, E.; Le Bizec, B. First Observations of a
Potential Association Between Accumulation of Per- and Polyfluoroalkyl Substances in the Central Nervous System and Markers
of Alzheimer’s Disease. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glad208. [CrossRef]

85. Finch, C.E.; Thorwald, M.A. Inhaled Pollutants of the Gero-Exposome and Later-Life Health. J. Gerontol. A Biol. Sci. Med. Sci.
2024, 79, glae107. [CrossRef]
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