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Abstract

Background: Extended physical inactivity causes disuse osteoporosis in humans. In contrast, brown bears (Ursus arctos) are
highly immobilised for half of the year during hibernation without signs of bone loss and therefore may serve as a model for
prevention of osteoporosis.

Aim: To study 25-hydroxy-vitamin D (25OHD) levels and bone turnover markers in brown bears during the hibernating state
in winter and during the active state in summer. We measured vitamin D subtypes (D2 and D3), calcitropic hormones
(parathyroid hormone [PTH], 1,25-dihydroxy-vitamin D [1,25(OH)2D]) and bone turnover parameters (osteocalcin, ICTP, CTX-
I), PTH, serum calcium and PIIINP.

Material and Methods: We drew blood from seven immobilised wild brown bears during hibernation in February and in the
same bears while active in June.

Results: Serum 25-hydroxy-cholecalciferol (25OHD3) was significantly higher in the summer than in the winter (22.864.6 vs.
8.862.1 nmol/l, two tailed p - 2p = 0.02), whereas 25-hydroxy-ergocalciferol (25OHD2) was higher in winter (54.268.3 vs.
18.761.7 nmol/l, 2p,0.01). Total serum calcium and PTH levels did not differ between winter and summer. Activated
1,25(OH)2D demonstrated a statistically insignificant trend towards higher summer levels. Osteocalcin levels were higher in
summer than winter, whereas other markers of bone turnover (ICTP and CTX-I) were unchanged. Serum PIIINP, which is a
marker of connective tissue and to some degree muscle turnover, was significantly higher during summer than during winter.

Conclusions: Dramatic changes were documented in the vitamin D3/D2 ratio and in markers of bone and connective tissue
turnover in brown bears between hibernation and the active state. Because hibernating brown bears do not develop disuse
osteoporosis, despite extensive physical inactivity we suggest that they may serve as a model for the prevention of this
disease.
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Introduction

Bone mineral density in humans is tightly regulated by loading

and physical activity [1]. A high bone loss occurs during unloading

[2], which may lead to so-called ‘‘disuse’’ osteoporosis [3]. This

carries an increased risk of fractures, as seen in e.g. patients with

para- and tetraplegia following spine fractures [4]. However, the

study of disuse osteoporosis in humans is hampered by the lack of

good research models.

Bone turnover can be evaluated using a number of markers of

bone formation and resorption. Markers of osteoblastic bone

formation include alkaline phosphatase and osteocalcin, whereas

procollagen type 1 N-terminal peptide [PINP] is a marker of bone

collagen formation [5]. Collagen crosslinks (CTX-I, ICTP) are

markers of bone resorption [5]. PINP is a marker of bone collagen,

whereas PIIINP is a marker of soft tissue collagen and thus the

turnover of muscle collagen. Also markers of calcium metabolism,

such as vitamin D metabolites and parathyroid hormone [PTH],

are important in assessing pathophysiological differences in the

mechanisms of bone loss following physical inactivity. Serum 25-

hydroxy-vitamin D (25OHD) reflect vitamin D stores, whereas

serum 1,25-dihydroxy-vitamin D (1,25(OH)2D) is the circulating
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active vitamin D that is produced in the kidneys and participate in

calcium homeostasis [6].

Hibernating brown bears (Ursus arctos) stay inside their winter

dens for 5–7 months in Scandinavia [7;8] and during this

hibernating period they do not eat, drink, defecate, urinate, or

have any physical activity. Brown bears are thus highly physically

inactive during hibernation, but no signs of disuse osteoporosis

have been found in studies of bone structure in bears [9–12], i.e.

the cortical porosity does not increase, which is in contrast to what

is observed in immobilised humans [4]. Therefore bears may

constitute a model for preventing and treating osteoporosis

following unloading, as seen in immobilised patients, as a

consequence of a sedentary life style [13], and the bone loss seen

in astronauts during prolonged space flights [14].

Little is known about 25OHD levels in bears, as only total

25OHD has been measured previously [15–17] with a non-

significant decrease being reported during hibernation [15].

It has been shown in humans that differences may exist in the

bioavailability and bioactivity of ergocalciferol (vitamin D2) and

cholecalciferol (vitamin D3) [18]. This may be of particular interest

in bears, as the diet of bears could result in a different ratio

between D2 and D3 compared to what is typically found in

humans, where D3 is the predominant form of vitamin D [18].

The aims of our study were to evaluate seasonal differences in

bone turnover between active and hibernating brown bears with

osteocalcin as a formative marker and ICTP and CTX-I as

resorptive markers. Furthermore, we aimed at measuring seasonal

variations in 25OHD levels as estimated by total serum 25OHD,

serum 25OHD2, and serum 25OHD3. We also measured the

calcitropic hormones serum 1,25(OH)2D and serum PTH. Finally,

we evaluated connective tissue turnover by measuring serum

PIIINP.

Materials and Methods

Ethics statement
All animal work has been conducted according to relevant

national and international guidelines.

This specific study of bears was approved by the Swedish

Ethical Committee on Animal Research, Uppsala (C212/9), and

the Swedish Environmental Protection Agency approved the

capture of the bears (Dnr 412-7327-09 Nv). All procedures

described were in compliance with Swedish laws and regulations.

Methods
We collected blood samples from 7 previously radio-collared

free-ranging two- to three-year-old brown bears (3 females, 4

males) during both hibernation (February 2010) and their active

period in the summer (June 2010). The free-ranging bears in our

study were monitored throughout the year using GPS collars or

VHF transmitters from they were one year old, and we monitored

them indirectly before that, because their mothers were monitored

in the same way. The bears were immobilized in the den in

February and from a helicopter in June by darting with a mixture

of tiletamine-zolazepam and medetomidine [19]. Blood was drawn

from the jugular vein as described previously [20], centrifuged and

kept frozen at 280uC until analysis [20].

This experimental design provides controls for both internal and

external effects (body and external temperature, feeding status) in

accordance with recommendations by Carey et al. [21].

We performed the following analyses:

1) Osteocalcin (N-MID Osteocalcin), CTX-I (b–Crosslaps),

and PTH were analysed in plasma by electrochemilumines-

cence assays on an automated system (Cobas e601, Roche

Diagnostics, Mannheim Germany). Imprecision of the

methods was validated over 20 days and coefficients of

variation for osteocalcin were 1.0% and 1.1% at levels of 25

and 84 mg/l, respectively, for CTX-I the values were 2.0%

and 1.5% at levels of 0.71 and 2.77 mg/l, respectively, and

for PTH 7.0% and 8.9% at levels of 1.4 and 2.8 pmol/l,
respectively.

2) ICTP and PIIINP were analysed in serum using radioim-

munoassays from Orion Diagnostics (Espoo, Finland). As

only small amounts of sample material were available

samples were diluted prior to analysis and PIIINP was

analyzed by a sequential saturation procedure as described

earlier [22]. CV values for PIIINP were 10.2% and 7.1% at

levels of 4.9 and 11.7 mg/l, and the corresponding values for

ICTP were 8.0% and 9.5% at levels of 7.9 and 22.7 mg/l,
respectively.

3) 25OHD (incl. 25OHD3 and 25OHD2) were analysed in

serum by isotope dilution liquid chromatography-mass

spectrometry (LC-MS/MS) using calibrators traceable to

the international standard reference material NIST SRM

972 [23]. Mean CVs for 25OHD3 were 8.1% and 9.6% at

48 nmol/l and 25 nmol/l, respectively, and for 25OHD2

the CV values were 8.5% and 8.0% at levels of 23 and

64 nmol/l, respectively. 1,25(OH)2D was analysed by RIA

after immunoextraction of the samples (1,25-dihydroxy

vitamin D RIA, IDS, Boldon, UK). According to the

supplier the method co-determines 1,25(OH)2D2 with a

cross specificity of 92% compared to 1,25(OH)2D3. Mean

CV values of 6.8% and 9.0% were observed at levels of 90

and 220 pmol/l, respectively.

4) Serum total calcium was analysed with a routine chemistry

analyzer (Cobas c)

Statistics
We used the mean and standard error of the mean (SEM) as

descriptive statistics. The distribution of the variables was tested

and found to follow a Gaussian distribution except for 25OHD,

25OHD2, 25OHD3, and 1,25(OH)2D. Despite the fact that these

parameters demonstrated a Gaussian distribution after log

transformation we chose to compare variables using the Wilcoxon

test for paired samples due to the low number of observations.

Pearson’s correlation coefficient was used to explore correlations.

Application of Spearman’s rank correlation did not change the

results. A p value below 0.05 was considered significant.

Borderline significance as indicator of a trend was considered for

0.05,p,0.10.

We performed a power calcification assuming summer 25OHD

levels to be 50 nmol/l with a 30% reduction in winter, a standard

deviation of 14 nmol/l, a type 1 error of 5% and a type 2 error of

20%. This calculation predicted that 7 animals were necessary in

case of paired samples in winter and summer. Due to larger

changes in the other variables this was the largest number of

animals predicted.

Results

Table 1 provides baseline data for all analyses performed and

compares hibernation with the active summer state. One

resorptive marker of bone turnover (ICTP) demonstrated a non-

significant trend towards higher values in summer, whereas

another marker (CTX-I) showed unchanged levels at the times

of sampling. The formative marker osteocalcin was twice as high

Vitamin D in Brown Bears

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e21483



in summer as in winter, but total serum calcium and PTH did not

differ. Total 25OHD tended to be lower in summer than in winter,

but the difference was not statistically significant. However, there

were significant seasonal shifts in 25OHD2 and 25OHD3 levels.

Serum 25OHD2 decreased significantly from winter to summer,

whereas serum 25OHD3 increased significantly from winter to

summer. The values of the active 1,25(OH)2D metabolite tended

to be higher in summer, but the differences were not statistically

significant, because of large standard deviations.

Table 2 shows the correlations between the various parameters

by season. Total 25OHD levels correlated with 25OHD3 levels in

summer and 25OHD2 levels in winter. In summer, 1,25(OH)2D

levels correlated with total 25OHD and with 25OHD3 levels,

whereas this was not the case in winter. In summer PTH levels

correlated inversely with serum calcium levels, i.e. PTH decreased

with increasing calcium levels, but this was not the case in winter.

In winter ICTP tended to correlate inversely with 1,25(OH)2D

(p = 0.08), whereas this was not the case in summer.

Discussion

In this study we have documented significant differences in

25OHD levels in brown bears between the hibernation period in

winter and the active period in summer. This may have significant

impact on bone turnover, as the higher levels especially of

25OHD2 during hibernation may prevent bone loss.

The precise mechanisms by which hibernating bears prevent

disuse bone loss are not known. In American black bears (Ursus

americanus) an increased bone turnover with a maintained, but

delayed, coupling between resorption (serum ICTP) and formation

(serum osteocalcin and serum PICP) has been reported [15].

Serum levels of PTH were higher during hibernation and

especially in the post-hibernation season with a positive correlation

between serum PTH and serum osteocalcin. This suggests that the

increase in PTH enhances bone turnover and stimulates

osteoblastic activity, although other mechanisms involving insu-

lin-like growth factor 1 (IGF-1) and prostaglandin E2 (PGE2) also

may be involved. Furthermore, the rise in PTH may conserve

calcium for skeletal recycling by increasing the renal tubular

reabsorption of calcium [15]. However, this is the opposite of what

is seen in humans, where PTH is suppressed during immobilisa-

tion [24]. Moreover in contrast to findings in humans [4] and

black bears, studies in grizzly bears (Ursus arctos horribilis) have

shown a decrease in cortical bone turnover during hibernation,

with a balance between formation and resorption that maintain

bone structure, porosity, and strength [12]. However, in both bear

species trabecular bone mass, structure, and integrity appear to be

preserved during hibernation [9]. Until now all studies on bears

have been conducted by one group of researchers [9–12;25] and

on other bear species than Ursus arctos.

Vitamin D
Our study showed interesting results for both 25OHD and

1,25(OH)2D. Total levels of 25OHD changed little, but this

masked considerable changes in 25OHD2 and 25OHD3. Ergo-

calciferol (vitamin D2) is typically formed in fungi and plants after

exposure to sunlight, whereas vitamin D3 is formed from

cholesterol in the skin after exposure to ultraviolet B (UVB) rays

from sunlight. Vitamin D3 may also come from the ingestion of

cholecalciferol. Our results demonstrated higher 25OHD3 levels in

summer, suggesting ingestion from food rich in vitamin D3 [26]

and to some degree dermal production from exposure to sunlight.

It is unclear how much sunlight contributes in bears, but other

animals are capable of synthesizing vitamin D3 despite having fur

[27]. The high levels of 25OHD2 during winter may indicate

mobilisation from pre-hibernation stores accumulated from

ingested vitamin D2 in food that is stored in fat and metabolised

during hibernation. The 25OHD2 may originate from a number

of food sources. One source of vitamin D may be blueberries that

are infested by fungi that produce vitamin D2 [26;28;29]. Other

sources of vitamin D2 may be plants, such as sun exposed and

dried hay [30;31], alfalfa hay [32], or rye grass [33]. However, the

free-ranging bears in our study were monitored throughout the

year using GPS or VHF transmitters, so that we could document

that none of the bears resided in cultivated areas or areas with

grassland. It is therefore unlikely that vitamin D in our bears stems

from these domesticated plants.

Vitamin D2 may be less biologically active than vitamin D3 [34].

This may explain the very high levels of 25OHD2 during

hibernation, as these high levels may be necessary to obtain the

same biological activity as lower levels of 25OHD3 [18;34].

The active 1,25(OH)2D levels tended to increase from winter to

summer, but the change was not statistically significant (p = 0.10).

This tendency towards an increase in 1,25(OH)2D perhaps reflects

higher sun exposure and increased access to animal vitamin D3, as

indicated by the positive correlation between 25OHD3 and

1,25(OH)2D during summer. Another explanation could be a

higher need for calcium absorption in the intestine and re-

absorption in the kidneys during summer to satisfy skeletal needs.

In the study by Donahue et al. [15] the method used for

determining 25OHD captured 25OHD3, but may not have

determined 25OHD2 completely, as the manufacturer ALPCO

has noted that only 68% of 25OHD2 may be determined in

comparison with 25OHD3. In contrast, our LC-MS method

captures both 25OHD3 and 25OHD2 completely. This may

explain why Donahue et al. [15] did not observe changes in total

25OHD levels (i.e. the combination of 25OHD2 and 25OHD3).

Serum calcium
In our study serum total calcium remained constant in both

seasons and in the same range as in humans (2.20–2.55 mmol/l

in humans and around 2.40 mmol/l in bears). This is in contrast

with the results of Donahue et al. for American black bears [15]

Table 1. Baseline characteristics of the biochemical
parameters of 7 subadult brown bears in Sweden in 2010
during hibernation in the winter and the active state in the
summer and comparisons of hibernation and active state
values.

Parameter Hibernation Summer
Two-tailed
p value (2 p)

ICTP (mg/l) 24.362.0 27.262.1 0.09

CTX-I (mg/l) 1.760.2 2.160.2 0.13

Osteocalcin (mg/l) 27.762.9 51.263.6 0.02

PIIINP (mg/l) 16.462.8 67.3619.9 0.02

25OHD (nmol/l) 63.069.1 41.563.9 0.09

25OHD2 (nmol/l) 54.268.3 18.761.7 0.02

25OHD3 (nmol/l) 8.862.1 22.864.6 0.03

1,25(OH)2D (pmol/l) 88.663.3 192.5659.0 0.07

PTH (pmol/l) 3.960.6 4.460.7 0.50

Total calcium (mmol/l) 2.3960.02 2.4160.04 0.29

Figures are mean6SEM.
Comparisons are made by the Wilcoxon test for paired samples.
doi:10.1371/journal.pone.0021483.t001
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where ionised calcium levels (0.71 during hibernation and

0.96 mmol/l after hibernation) were significantly lower than in

humans (around 1.17–1.32 mmol/l). Another study on American

black bears found serum calcium levels in the same range as we

did, but failed to show any changes between hibernation and

summer [35]. Serum calcium levels do not provide exact

information about calcium flow through the system, but rather

reflect that the different hormones and tissue compartments

through various feed back systems that attempt to maintain

constant total calcium levels.

Bone turnover
We found that markers of bone resorption tended to be higher

during summer than winter. This is in contrast to the doubling of

the formative marker osteocalcin from winter to summer. It thus

seems that bone formation may be high in the summer, perhaps

reflecting a much higher loading of the bones, whereas in the

winter less remodelling is needed to maintain the same bone

mineral density. Another explanation could be that the increase in

1,25(OH)2D during summer might stimulate osteoblastic osteo-

calcin production directly in parallel with the observation that

exogenous 1,25(OH)2D acutely increases serum osteocalcin in

humans [36].

The study of American black bears by Donahue et al. [15]

showed the opposite of our results, with much higher osteocalcin

levels during hibernation than during pre- and post-hibernation.

These authors also found a trend towards higher ICTP levels

during hibernation than during the active state, which also

contrasts with our results. In addition to species differences,

another reason for the differences could be that Donahue et al.

[15] studied female bears in captivity, several of which had given

birth to cubs before the study, whereas we studied subadult male

and female bears in the wild.

When interpreting the results regarding osteocalcin, it should be

remembered that recent research in humans has shown that

osteocalcin is not just a marker of bone turnover, but also a marker

of insulin resistance and blood glucose levels, as it is part of the

intricate system of pancreatic beta-cell signalling [37–39].

Therefore, it is possible that the much higher levels of osteocalcin

than we found during summer are related to feeding status with a

higher need of insulin for digestion and metabolism during

summer. Obviously, significant changes in body composition take

place from winter to summer with fat depots that were stored

during the summer being mobilised during winter. However, an

earlier study of American black bears [40] found no changes in

serum insulin levels over time and no correlation between insulin

and body weight. In summer, a higher metabolism is needed

compared with winter, because of higher physical activity.

However, the higher physical activity in summer may also mean

that less insulin is needed because of increased insulin sensitivity.

Therefore, insulin levels may remain unchanged in response to the

complex changes in metabolism.

Parathyroid hormone (PTH)
In our study PTH levels changed little from winter to summer,

in accordance with the constant serum calcium levels. Our results

contrast with the results of Donahue et al. [15], who observed an

increase during hibernation in black bears. One reason for the

absence of any increase in PTH (secondary hyperparathyroidism)

during winter may be the presence of sufficient levels of 25OHD

metabolites throughout the year may. However, we have no

explanation for the observed doubling in serum 1,25(OH)2D

Table 2. Pearson’s correlation coefficient between parameters of bone turnover and calcitropic hormones of 7 subadult bears in
Sweden in 2010 during hibernation in winter and the active state in the summer.

Season Parameter ICTP CTX-I 25OHD 25OHD2 25OHD3 1,25(OH)2D Osteocalcin PIIINP PTH Total Ca

Summer ICTP - 0.65 20.18 20.51 0.04 20.34 0.06 0.25 0.35 20.48

CTX-I - - 0.22 0.08 0.15 0.01 0.31 20.02 0.15 20.21

25OHD - - - 20.20 0.93* 0.91* 20.44 0.38 20.15 0.25

25OHD2 - - - - 20.55 20.25 0.46 20.52 20.46 0.48

25OHD3 - - - - - 0.87* 20.55 0.52 0.05 0.04

1,25(OH)2D - - - - - - 0.39 0.16 0.003 0.07

Osteocalcin - - - - - - - 20.19 0.39 20.51

PIIINP - - - - - - - - 0.09 20.07

PTH - - - - - - - - - 20.83*

Total Ca - - - - - - - - - -

Winter ICTP - 0.48 0.14 0.29 20.54 20.78 a 0.41 20.02 0.54 20.59

CTX-I - - 20.02 0.07 20.34 20.41 0.09 20.01 0.78* 0.18

25OHD - - - 0.97* 0.47 20.04 20.39 0.16 20.06 20.25

25OHD2 - - - - 0.26 20.22 20.30 0.18 0.03 20.37

25OHD3 - - - - - 0.68 20.48 20.005 20.37 0.35

1,25(OH)2D - - - - - - 20.55 20.56 20.49 0.27

Osteocalcin - - - - - - - 0.63 0.09 0.37

PIIINP - - - - - - - - -0.22 0.45

PTH - - - - - - - - - 0.30

Total Ca - - - - - - - - - -

ap = 0.08, *Significant correlation, i.e. p,0.05.
doi:10.1371/journal.pone.0021483.t002
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during summer. Renal 1,25(OH)2D production in humans is

normally enhanced by PTH, hypocalcaemia, and hypophospha-

temia and inhibited by 1,25(OH)2D and fibroblast growth factor

23 (FGF23). The latter is a skeletal phosphatonin that increases

renal phosphate excretion and acts as a negative regulator of the

renal 1-alpha-hydroxylase, which turns 25OHD into 1,25(OH)2D

[41]. We did not measure these variables in our study, so further

studies are necessary.

Donahue et al. [15] presented no data on 1,25(OH)2D, thus no

direct comparison with our findings were possible.

Correlations
In summer, 1,25(OH)2D levels correlated with 25OHD3 levels,

whereas 25OHD2 levels correlated with total levels in the winter,

underlining the importance of stored vitamin D2 for the winter.

This may be related to later-summer/fall ingestion of fungi,

possibly from blueberries contaminated with fungi [29] or other

potential vitamin D2 sources, as outlined above.

In summer, there was a clear inverse correlation between PTH

and serum total calcium, as is also seen in humans [42]. However,

this correlation was absent in winter, indicating that other factors

besides PTH may be important at this time, perhaps 1,25(OH)2D,

which determines long-term serum calcium variations, as the half-

life of vitamin D is much longer than PTH.

The seasonal changes in total serum 25OHD and 1,25(OH)2D

levels did not reach statistical significance. However, the two

vitamin D subtypes varied inversely with the highest serum levels

of 25OHD2 during winter and highest serum 25OHD3 levels

during summer. The higher proportion of 25OHD2 to 25OHD3

during winter may compensate for the lesser activity of 25OHD2

compared with 25OHD3 and result in an unchanged total vitamin

D impact on target tissues across seasons. Through local and

systemic 1-alpha-hydroxylase activity this might contribute to the

steady serum PTH levels which did not display seasonal changes.

Our observation that serum ICTP correlated inversely with

1,25(OH)2D in winter suggests that sufficient levels of active

vitamin D are important during hibernation to suppress bone

resorption and thereby prevent bone loss. A correlation between

ICTP and 1,25(OH)2D was not observed during summer.

Connective tissue and muscles
PIIINP is a marker of the synthesis of connective tissue (collagen

type III) and thus also to some degree of muscle status. PIIINP

showed much higher levels during summer, possibly reflecting

higher connective tissue synthesis during the physical activity in

the summer than in the winter, when a lower turnover is needed to

conserve the same amount of connective tissue.

Limitations
A number of limitations exist for the current study relating to

the small sample size, potential error in assays because of limited

species specificity, lack of dietary calcium measurements, and lack

of measurements of biochemical parameters such as FGF23,

phosphate, and vitamin D receptor subtypes. However, our study

design, where each bear served as its own control is a powerful

design controlling for most potential confounding variables. Had

we used captive bears, most biochemical limitations could have

been avoided but at the cost of introducing other limitations

because of diet, decreased physical activity and disturbances.

Conclusions
We postulate that a carefully coordinated steady state of bone

and connective tissue is maintained in brown bears by increased

regeneration and turnover during the high activity of the summer

and a lower turnover in winter, when lower physical load requires

less connective tissue and thus muscle and bone formation.

Because hibernating brown bears do not develop disuse osteopo-

rosis despite extensive physical inactivity we suggest that they may

serve as a model for the prevention of this disease. The

coordinated steady state of muscle and bone in bears should be

the subject for future research.
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