Drug interactions with Vitamin D - many studies

Sometimes a drug reduces Vitamin D levels in the blood
Scores of times Vitamin D will improve the a drug efficacy
Warning: Chemotherapy and vitamin D - many studies and become deadly
In rare cases Vitamin D reduces the benefit of a drug


9 drug interaction studies in VitaminDWiki

Common drugs as vitamin D disruptors – 2020
Vitamin D generally improves the efficacy of drugs while reducing their adverse effects – Jan 2020
24 drugs that typically reduce Vitamin D levels – Review Aug 2021
Interaction of drugs with Vitamin D, Magnesium, Vitamin B12, Selenium, etc – Dec 2018
Some drugs change potency when Vitamin D is increased (increase in a hormone)
Glucocorticoid treatment reduces Vitamin D getting to cells via 3 or 4 genes
Drugs which create deficiencies in Vitamin D, Vitamin K, Magnesium, Zinc, Iron, etc. – Sept 2017
Tylenol associated with both low vitamin D and Autism
Drugs that may harm bone (vitamin D needed) -April 2016


Endocrine Disrupting Chemicals - book April 2019 contains:

MedicationTypeEffect on Vitamin D
MetforminAntidiabeticMay lower vitamin D levels, with other oral antidiabetic medications
Thiazolidinediones (TDZs)AntidiabeticIncreases risk of bone loss, especially in women
Thiazide DiureticsDiureticPotential increased risk of hypercalcemia
Loop DiureticsDiureticPotential increased risk of hyperparathyroidism and increased conversion of 25(OH)D to 1,25(OH)2D
Potassium-Sparing DiureticsDiureticMixed findings
Calcium Channel BlockersCardiovascularIncrease risk of vitamin D deficiency
Angiotensin-ConvertingEnzyme (ACE) InhibitorsCardiovascularMay lower vitamin D levels
StatinsCardiovascularMixed findings; some have shown increased vitamin D levels while others have found decreased levels with statin use
Bile Acid SequestrantsCardiovascularMay decrease vitamin D absorption, increase risk of osteomalacia at certain doses
Vitamin K AntagonistsCardiovascularMay lower vitamin D levels
Platelet Aggregation InhibitorsCardiovascularMixed findings
HeparinCardiovascularNegatively affects vitamin D metabolism, increases risk of osteoporotic fractures, especially seen with unfractionated heparin
DigoxinCardiovascularLinked to lower vitamin D
BenzodiazepinesCNSLinked to lower vitamin D
Antidepressants (SSRIs)CNSLinked to lower vitamin D
Enzyme-Inducingantiepileptic Drugs (AEDs)CNSLinked to lower vitamin D and vitamin D deficiency
Newerantiepileptic DrugsCNSMixed findings; may lower bone mineral density and increase risk of fracture
Proton Pump Inhibitors (PPIs)GastrointestinalMay increased risk of osteoporosis; vitamin D and calcium supplementation recommended
Histamine H2-Receptor AntagonistsGastrointestinalMay decrease vitamin D, mixed findings
Lipase InhibitorsGastrointestinalMay inhibit vitamin D uptake and absorption
LaxativesGastrointestinalReduce vitamin D absorption, may result in osteomalacia
CorticosteroidsAnti-InflammatoryMay reduce vitamin D levels, increase risk of osteoporosis
Inhaled Corticosteroids (ICS)Anti-InflammatoryMixed findings; long term use may negatively impact bone metabolism and bone mineral density, especially in those with COPD
HydroxychloroquineAnti-InflammatoryMay increase vitamin D levels
AntimicrobialsAnti-infectives/
Antivirals
May decrease vitamin D; increased risk of osteomalacia with prolonged use
Sulphonamides and Urea DerivativesAnti-infectives/
Antivirals
Lower vitamin D levels
Highly Active Antiretroviral Therapy (HAART)Anti-infectives/
Antivirals
Mixed findings, may lower vitamin D
Chemotherapeutic AgentsCancerMay lower vitamin D levels; studies show vitamin D may enhance the effect of these therapies
  • CNS = Central Nervous System

24 classes of drugs that impact Vitamin D status (ignores Vitamin D getting to cells) - Dec 2022

A Literature Review of the Potential Impact of Medication on Vitamin D Status
Risk Management and Healthcare Policy https://doi.org/10.2147/RMHP.S316897
Michael Wakeman

In recent years, there has been a significant increase in media coverage of the putative actions of vitamin D as well as the possible health benefits that supplementation might deliver. However, the potential effect that medications may have on the vitamin D status is rarely taken into consideration. This literature review was undertaken to assess the degree to which vitamin D status may be affected by medication. Electronic databases were searched to identify literature relating to this subject, and study characteristics and conclusions were scrutinized for evidence of potential associations.
The following groups of drugs were identified in one or more studies to affect vitamin D status in some way:

  1. anti-epileptics,
  2. laxatives,
  3. metformin,
  4. loop diuretics,
  5. angiotensin-converting enzyme inhibitors,
  6. thiazide diuretics,
  7. statins,
  8. calcium channel blockers,
  9. antagonists of vitamin K,
  10. platelet aggregation inhibitors,
  11. digoxin,
  12. potassium-sparing diuretics,
  13. benzodiazepines,
  14. antidepressants,
  15. proton pump inhibitors,
  16. histamine H2-receptor antagonists,
  17. bile acid sequestrants,
  18. corticosteroids,
  19. antimicrobials,
  20. sulphonamides and urea derivatives,
  21. lipase inhibitors,
  22. hydroxychloroquine,
  23. highly active antiretroviral agents, and
  24. certain chemotherapeutic agents.

Given that the quality of the data is heterogeneous, newer, more robustly designed studies are required to better define likely interactions between vitamin D and medications.
This is especially so for cytochrome P450 3A4 enzyme (CYP3A4)-metabolized medications. Nevertheless, this review suggests that providers of health care ought to be alert to the potential of vitamin D depletions induced by medications, especially in elderly people exposed to multiple-drug therapy, and to provide supplementation if required.
 Download the PDF from VitaminDWiki


229 References
  1. Autier P, Boniol M, Pizot C, Mullie P Vitamin D status and ill health: a systematic review. Lancet diabetes Endocrinol. 2014;2(1):76-89. doi:10.1016/S2213-8587(13)70165-7
  2. Francis R, Aspray T, Fraser W, et al. Vitamin D and bone health: a practical clinical guideline for patient management. Nat Osteoporos Soc. 2013;28.
  3. Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011;86(1):50-60. doi:10.4065/mcp.2010.0567
  4. Department of Health. Nutrition and bone Health: With Particular Reference to Calcium and Vitamin D. London: The Stationery Office; 1998:49.
  5. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to vitamin D and maintenance of bone and teeth (ID 150, 151, 158), absorption and utilisation of calcium and phosphorus and maintenance of normal blood calcium concentrations (ID 152, 157), cell division (ID 153), and thyroid function (ID 156) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2009;7(10):1227.
  6. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to vitamin D and normal function of the immune system and inflamma­tory response (ID 154, 159), maintenance of normal muscle function (ID 155) and maintenance of normal cardiovascular function (ID 159) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2010;8(2):1468.
  7. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to vitamin D and contribution to normal bone and tooth development pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2014;12(2):3579.
  8. Mithal A, Wahl DA, Bonjour JP, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20 (11):1807-1820. doi:10.1007/s00198-009-0954-6
  9. Lanham-New SA, Buttriss JL, Miles LM, et al. Proceedings of the rank forum on vitamin D. Br J Nutr. 2011;105(1):144-156. doi:10.1017/S0007114510002576
  10. Norman AW, Mizwicki MT, Norman DP. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 2004;3(1):27-1. doi:10.1038/nrd1283
  11. Pascussi JM, Gerbal-Chaloin S, Drocourt L, Maurel P, Vilarem MJ. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta. 2003;1619(3):243-253. doi:10.1016/S0304-4165 00483-X
  12. Chatterjee B, Echchgadda I, Song CS. Vitamin D receptor reg­ulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol. 2005;400:165-191.
  13. Fan J, Liu S, Du Y, Morrison J, Shipman R, Pang KS. Up- regulation of transporters and enzymes by the vitamin D receptor ligands, 1alpha,25-dihydroxyvitamin D3 and vitamin D analogs, in the Caco-2 cell monolayer. J Pharmacol Exp Ther. 2009;330 (2):389-402. doi:10.1124/jpet.108.149815
  14. Institute of Medicine. Dietary Reference Intakes for Vitamin D and Calcium. Vol. 2010. Washington, DC: Institute of Medicine; 2011.
  15. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84(1):18-28. doi:10.1093/ajcn/84.1.18
  16. Vieth R, Bischoff-Ferrari H, Boucher BJ, et al. The urgent need to recommend an intake of vitamin D that is effective. Am J Clin Nutr. 2007;85(3):649-650. doi:10.1093/ajcn/85.3.649
  17. Hollis BW. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effec­tive dietary intake recommendation for vitamin D. J Nutr. 2005;135(2):317-322. doi:10.1093/jn/135.2.317
  18. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690-693.
  19. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67 (2):373-378. doi:10.1210/jcem-67-2-373
  20. Dawson-Hughes B, Harris SS, Dallal GE. Plasma calcidiol, sea­son, and serum parathyroid hormone concentrations in healthy elderly men and women. Am J Clin Nutr. 1997;65(1):67-71. doi:10.1093/ajcn/65.1.67
  21. Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R. Estimates of optimal vitamin D status. Osteoporos Int. 2005;16(7):713-716. doi:10.1007/s00198-005-1867-7
  22. Luo G, Guenthner T, Gan LS, Humphreys WG. CYP3A4 induc­tion by xenobiotics: biochemistry, experimental methods and impact on drug discovery and development. Curr Drug Metab. 2004;5(6):483-505. doi:10.2174/1389200043335397
  23. Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008;9(4):310- 322. doi:10.2174/138920008784220664
  24. Watkins PB, Wrighton SA, Schuetz EG, Molowa DT, Guzelian PS. Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. J Clin Invest. 1987;80 (4):1029-1036. doi:10.1172/JCI113156
  25. Kolars JC, Schmiedlin-Ren P, Schuetz JD, Fang C, Watkins PB. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest. 1992;90(5):1871- 1878. doi:10.1172/JCI116064
  26. Thummel KE, Brimer C, Yasuda K, et al. Transcriptional control of intestinal cytochrome P-4503A by 1alpha,25-dihydroxy vita­min D3. Mol Pharmacol. 2001;60(6):1399-1406. doi:10.1124/ mol.60.6.1399
  27. Lindh JD, Andersson ML, Eliasson E, Bjorkhem-Bergman L. Seasonal variation in blood drug concentrations and a potential relationship to vitamin D. Drug Metab Dispos. 2011;39(5):933- 937. doi:10.1124/dmd.111.038125
  28. Bates B, Lennox A, Prentice A, et al. National diet and nutrition survey results from years 1, 2, 3 and 4 (combined) of the rolling programme (2008/2009-2011/2012). London: Public Health England, Food Standards Agency; 2014.
  29. Morijiri Y, Sato T. Factors causing rickets in institutionalised handicapped children on anticonvulsant therapy. Arch Dis Child. 1981;56(6):446-49. doi:10.1136/adc.56.6.446
  30. Krause KH, Berlit P, Bonjour JP, Schmidt-Gayk H, Schellenberg B, Gillen J. Vitamin status in patients on chronic anticonvulsant therapy. Int J Vitam Nutr Res. 1982;52(4):375-385.
  31. Gough H, Goggin T, Bissessar A, Baker M, Crowley M, Callaghan N. A comparative study of the relative influence of different anticonvulsant drugs, UV exposure and diet on vitamin D and calcium metabolism in outpatients with epilepsy. Q J Med. 1986;59(230):569-577.
  32. Hahn TJ, Hendin BA, Scharp CR, Haddad JG. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med. 1972;287(18):900-904. doi:10.1056/ NEJM197211022871803
  33. Bouillon R, Reynaert J, Claes JH, Lissens W, De Moor P. The effect of anticonvulsant therapy on serum levels of 25-hydroxy- vitamin D, calcium, and parathyroid hormone. J Clin Endocrinol Metab. 1975;41(6):1130-1135. doi:10.1210/jcem-41-6-1130
  34. Jubiz W, Haussler MR, McCain TA, Tolman KG. Plasma 1,25-dihy- droxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin EndocrinolMetab. 1977;44(4):617-621. doi:10.1210/jcem-44-4- 617
  35. Pylypchuk G, Oreopoulos DG, Wilson DR, et al. Calcium meta­bolism in adult outpatients with epilepsy receiving long-term anticonvulsant therapy. Can Med Assoc J. 1978;118(6):635-638.
  36. Weisman Y, Andriola M, Reiter E, Gruskin A, Root A. Serum concentrations of 25-hydroxyvitamin D in Florida children: effect of anticonvulsant drugs. South Med J. 1979;72(4):400-401, 408. doi:10.1097/00007611-197904000-00009
  37. Christensen CK, Lund B, Lund BJ, Sorensen OH, Nielsen HE, Mosekilde L. Reduced 2,25-dihydroxyvitamin D and 24,25-dihy-droxyvitamin D in epileptic patients receiving chronic combined anticonvulsant therapy. Metab bone Dis Relat Res. 1981;3(1):17- 22. doi:10.1016/S0221-8747(81)80018-5
  38. Hoikka V, Savolainen K, Alhava EM, Sivenius J, Karjalainen P, Repo A. Osteomalacia in institutionalized epileptic patients on long-term anticonvulsant therapy. Acta Neurol Scand. 1981;64 (2):122-131. doi:10.1111/j.1600-0404.1981.tb04394.x
  39. Keck E, Gollnick B, Reinhardt D, Karch D, Peerenboom H, Kruskemper HL. Calcium metabolism and vitamin D metabolite levels in children receiving anticonvulsant drugs. Eur J Pediatr. 1982;139(1):52-55. doi:10.1007/BF00442080
  40. Lamberg-Allardt C, Wilska M, Saraste KL, Gronlund T. Vitamin D status of ambulatory and nonambulatory mentally retarded children with and without carbamazepine treatment. Ann Nutr Metab. 1990;34(4):216-220. doi:10.1159/000177590
  41. Valimaki MJ, Tiihonen M, Laitinen K, et al. bone mineral density measured by dual-energy x-ray absorptiometry and novel markers of bone formation and resorption in patients onantiepileptic drugs. J bone Miner Res. 1994;9(5):631-637. doi:10.1002/jbmr.5650090507
  42. Telci A, Cakatay U, Kurt BB, et al. Changes in bone turnover and deoxypyridinoline levels in epileptic patients. Clin Chem Lab Med. 2000;38(1):47-50. doi:10.1515/CCLM.2000.008
  43. Stamp TC, Round JM, Rowe DJ, Haddad JG. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972;4(5831):9- 12. doi:10.1136/bmj.4.5831.9
  44. Tjellesen L, Christiansen C. Serum vitamin D metabolites in epileptic patients treated with 2 different anti-convulsants. Acta Neurol Scand. 1982;66(3):335-341. doi:10.11n/j.1600–0404.1982.tb06853.x
  45. Davie MW, Emberson CE, Lawson DE, et al. Low plasma 25-hydro- xyvitamin D and serum calcium levels in institutionalized epileptic subjects: associated risk factors, consequences and response to treat­ment with vitamin D. Q J Med. 1983;52(205):79-91.
  46. Hoikka V, Alhava EM, Karjalainen P, et al. Carbamazepine and bone mineral metabolism. Acta Neurol Scand. 1984;70(2):77-80. doi:10.1111/j.1600-0404.1984.tb00806.x
  47. Rajantie J, Lamberg-Allardt C, Wilska M. Does carbamazepine treatment lead to a need of extra vitamin D in some mentally retarded children? Acta Paediatr Scand. 1984;73(3):325-328.
  48. Nishiyama S, Kuwahara T, Matsuda I. Decreased bone density in severely handicapped children and adults, with reference to the influence of limited mobility and anticonvulsant medication. Eur J Pediatr. 1986;144(5):457-463. doi:10.1007/BF00441738
  49. Winnacker JL, Yeager H, Saunders JA, Russell B, Anast CS. Rickets in children receiving anticonvulsant drugs: biochemical and hormonal markers. Am J Dis Child. 1977;131(3):286-290. doi:10.1001/archpedi.1977.02120160040005
  50. Markestad T, Ulstein M, Strandjord RE, Aksnes L, Aarskog D. anticonvulsant drug therapy in human pregnancy: effects on serum concentrations of vitamin D metabolites in maternal and cord blood. Am J Obstet Gynecol. 1984;150(3):254-258. doi:10.1016/S0002-9378(84)90361-2
  51. Riancho JA, Del Arco C, Arteaga R, Herranz JL, Albajar M, Macias JG. Influence of solar irradiation on vitamin D levels in children on anticonvulsant drugs. Acta Neurol Scand. 1989;79 (4):296-299. doi:10.im/j.1600-0404.1989.tb03788.x
  52. Hoikka V, Savolainen K, Alhava EM, Sivenius J, Karjalainen P, Parvianinen M. anticonvulsant osteomalacia in epileptic outpati­ents. Ann Clin Res. 1982;14(3):129-132.
  53. Bell RD, Pak CY, Zerwekh J, et al. Effect of phenytoin on bone and mineral density in ambulatory epileptic children. Brain Dev. 1994;16:382-385. doi:10.1016/0387-7604(94)90125-2
  54. Collins N, Maher J, Cole M, et al. A prospective study to evaluate the dose of vitamin D required to correct low 25-hydroxyvitamin D levels, calcium, and alkaline phosphatase in patients at risk of developingantiepileptic drug-induced osteomalacia. Q J Med. 1991;78:113-122.
  55. Young RC, Blass JP Iatrogenic nutritional deficiencies. Annu Rev Nutr. 1982;2:201-227. doi:10.1146/annurev.nu.02.070182.001221
  56. Livingston S, Pauli LL. anticonvulsants and rickets-a different view. Pediatrics. 1976;57(6):979.
  57. Offermann G, Pinto V, Kruse R.antiepileptic drugs and vitamin D supplementation. Epilepsia. 1979;20(1):3-15. doi:10.1111/ j.1528-1157.1979.tb04771.x
  58. Peterson P, Gray P, Tolman KG. Calcium balance in drug-induced osteomalacia: response to vitamin D. Clin Pharmacol Ther. 1976;19(1):63-67. doi:10.1002/cpt197619163
  59. Christiansen C, Rodbro P, Munck O. Actions of vitamins D2 and D3 and 25-OHD3 in anticonvulsant osteomalacia. Br Med J. 1975;2(5967):363-365. doi:10.1136/bmj.2.5967.363
  60. Menon B, Harinarayan CV. The effect of anti epileptic drug therapy on serum 25-hydroxyvitamin D and parameters of cal­cium and bone metabolism—A longitudinal study. Seizure. 2010;19(3):153-158. doi:10.1016/j.seizure.2010.01.006
  61. Robien K, Oppeneer SJ, Kelly JA, Hamilton-Reeves JM. Drug- vitamin D interactions: a systematic review of the literature. Nutr Clin Pract. 2013;28:194-208. doi:10.1177/0884533612467824
  62. Mikati MA, Dib L, Yamout B, Sawaya R, Rahi AC, Fuleihan GE. Two randomized vitamin D trials in ambulatory patients on anticonvulsants: impact on bone. Neurology. 2006;67(11):2005-2014. doi:10.1212/01.wnl.0000247107.54562.0e
  63. Jette N, Lix LM, Metge CJ, Prior HJ, McChesney J, Leslie WD. Association ofantiepileptic drugs with nontraumatic fractures: a population-based analysis. Arch Neurol. 2011;68:107-112. doi:10.1001/archneurol.2010.341
  64. Lee RH, Lyles KW, Sloane R, Colon-Emeric C. The association of newer anticonvulsant medications and bone mineral density. Endocr Pract. 2012;1-22. doi:10.4158/EP12119.OR
  65. Bauer S, Hofbauer LC, Rauner M, et al. Early detection of bone metabolism changes under differentantiepileptic drugs (ED- BoM-AED) - a prospective multicenter study. Epilepsy Res. 2013;106:417-422. doi:10.1016/j.eplepsyres.2013.06.020
  66. Beniczky SA, Viken J, Jensen LT, Andersen NB. bone mineral density in adult patients treated with variousantiepileptic drugs. Seizure. 2012;21:471-472. doi:10.1016/j.seizure.2012.04.002
  67. Koo DL, Hwang KJ, Han SW, et al. Effect of oxcarbazepine on bone mineral density and biochemical markers of bone metabo­lism in patients with epilepsy. Epilepsy Res. 2014;108:442-447. doi:10.1016/j.eplepsyres.2013.09.009
  68. Meier C, Kraenzlin ME.antiepileptics and bone health. Ther Adv Musculoskelet Dis. 2011;3:235-243. doi:10.1177/1759720X11410769
  69. Mintzer S, Boppana P, Toguri J, DeSantis A. Vitamin D levels and bone turnover in epilepsy patients taking carbamazepine or oxcarbazepine. Epilepsia. 2006;47:510-515. doi:10.1111/j.1528- 1167.2006.00460.x
  70. Phabphal K, Geater A, Limapichat K, Sathirapanya P, Setthawatcharawanich S, Leelawattana R. Effect of switching hepatic enzyme-inducerantiepileptic drug to levetiracetam on bone mineral density, 25 hydroxyvitamin D, and parathyroid hormone in young adult patients with epilepsy. Epilepsia. 2013;54:e94-8. doi:10.1111/epi.12162
  71. Nissen-Meyer LS, Svalheim S, Tauboll E, et al. Levetiracetam, phenytoin, and valproate act differently on rat bone mass, struc­ture, and metabolism. Epilepsia. 2007;48:1850-1860. doi:10.1111/j.1528-1167.2007.01176.x
  72. Wu F-J, Sheu SY, Lin HC. Osteoporosis is associated withantiepileptic drugs: a population-based study. Epileptic Disord. 2014;16(3):333-342. doi:10.1684/epd.2014.0673
  73. Frier BM, Scott RD. Osteomalacia and arthropathy associated with prolonged abuse of purgatives. Br J Clin Pract. 1977;31:17-19.
  74. Boucher BJ. Inadequate vitamin D status: does it contribute to the disorders comprising syndrome ‘X’? Br J Nutr. 1998;79(4):315- 327. doi:10.1079/BJN19980055
  75. Takiishi T, Gysemans C, Bouillon R, Mathieu C. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2010;39:419-446.
  76. Sohl E, Van Schoor NM, De Jongh RT, et al. The impact of medication on vitamin D status in older individuals. Eur J Endocrinol. 2012;166:477-85. doi:10.1530/EJE-11-0917
  77. Kos E, Liszek MJ, Emanuele MA, et al. Effect of metformin therapy on vitamin D and vitamin B12 levels in patients with type 2 diabetes mellitus. Endocr Pract. 2012;18(2):179-184. doi:10.4158/EP11009.OR
  78. Suzuki A, Kotake M, Ono Y, et al. Hypovitaminosis D in type 2 diabetes mellitus: association with microvascular complications and type of treatment. Endocr J. 2006;53(4):503-510. doi:10.1507/endocrj.k06-001
  79. Ernst JB, Kuhn J, Becker T, et al. Association between circulating 25-hydroxyvitamin D levels and medication use in patients sched­uled for cardiac surgery. Nutr Metab Cardiovasc Dis. 2015;25 :280-286. doi:10.1016/j.numecd.2014.10.014
  80. van Orten-Luiten AC, Janse A, Dhonukshe-Rutten RA, Witkamp RF. Vitamin D deficiency as adverse drug reaction? A cross-sectional study in Dutch geriatric outpatients. Eur J Clin Pharmacol. 2016;72(5):605-614. doi:10.1007/s00228-016-2016-2
  81. Lecka-Czernik B. bone as a target of type 2 diabetes treatment. Curr Opin Investig. 2009;10:1085-1090.
  82. Lecka-Czernik B. bone loss in diabetes: use of antidiabetic thia- zolidinediones and secondary osteoporosis. Curr Osteoporos Rep. 2010;8:178-184. doi:10.1007/s11914-010-0027-y
  83. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(2):592-600. doi:10.1210/jc.2009- 1385
  84. Solomon DH, Cadarette SM, Choudhry NK, Canning C, Levin R, Sturmer T. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocrinol Metab. 2009;94 (8):2792-2798. doi:10.1210/jc.2008-2157
  85. Schwartz AV, Chen H, Ambrosius WT, et al. Effects of TZD use and discontinuation on fracture rates in ACCORD bone study. J Clin Endocrinol Metab. 2015;100(11):4059-066. doi:10.1210/ jc.2015-1215
  86. Benvenuti S, Cellai I, Luciani P, et al. Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells. J Endocrinol Invest. 2007;30(9): RC26-30. doi:10.1007/BF03350807
  87. Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology. 2005;146(3):1226-1235. doi:10.1210/en.2004-0735
  88. Billington EO, Grey A, Bolland MJ. The effect of thiazolidine- diones on bone mineral density and bone turnover: systematic review and meta-analysis. Diabetologia. 2015;58(10):2238-2246. doi:10.1007/s00125-015-3660-2
  89. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidine- diones and fractures in type 2 diabetes: a meta-analysis. Cmaj. 2009;180(1):32-39. doi:10.1503/cmaj.080486
  90. Zabfocka-Sfowinska K, Dzielska E, Gryszkin I, Grajeta H. Dietary supplementation during diabetes therapy and the potential risk of interactions. Adv Clin Exp Med. 2014;23(6):939-946. doi:10.17219/acem/37348
  91. Rejnmark L, Vestergaard P, Heickendorff L, et al. Effects of thiazide- and loop-diuretics, alone or in combination, on calcitro- pic hormones and biochemical bone markers: a randomized con­trolled study. J Intern Med. 2001;250(2):144-153.
  92. Hathcock JN, Shao A, Vieth R, Heaney R. Risk assessment for vitamin D. Am J Clin Nutr. 2007;85(1):6-18. doi:10.1093/ajcn/ 85.1.6
  93. Riis B, Christiansen C. Actions of thiazide on vitamin D meta­bolism: a controlled therapeutic trial in normal women early in the postmenopause. Metab Clin Exp. 1985;34(5):421-424.doi:10.1016/0026-0495(85)90206-9
  94. Lemann J, Gray RW, Maierhofer WJ, Cheung HS.Hydrochlorothiazide inhibits bone resorption in men despite experimentally elevated serum 1,25-dihydroxyvitamin D concen­trations. Kidney Int. 1985;28(6):951-958. doi:10.1038/ki.1985.223
  95. Kokot F, Pietrek J, Srokowska S, et al. 25-Hydroxyvitamin D in patients with essential hypertension. Clin Nephrol. 1981;16:188-192.
  96. Perry HM, Jensen J, Kaiser FE, Horowitz M, Perry HM, Morley JE. The effects of thiazide diuretics on calcium metabolism in the aged. J Am Geriatr Soc. 1993;41(8):818-822. doi:10.1m/j.1532- 5415.1993.tb06176.x
  97. Rejnmark L, Vestergaard P, Heickendorff L, Andreasen F,Mosekilde L. Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J Intern Med. 2005;257:176-184. doi:10.1m/j.1365-2796.2004.01434.x
  98. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22:477-501. doi:10.1210/edrv.22.4.0437
  99. Levin TT, Bakr MH, Nikolova T. Case report: delirium due to a diltiazem-fentanyl CYP3A4 drug interaction. Gen Hosp Psychiatry. 2010;32:648. doi:10.1016/j.genhosppsych.2010.08.003
  100. Zhou SF, Xue CC, Yu XQ, et al. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitor­ing. Ther Drug Monit. 2007;29(6):687-710. doi:10.1097/ FTD.0b013e31815c16f5
  101. Grober U, Kisters K. Influence of drugs on vitamin D and calcium metabolism. Dermatoendocrinol. 2012;4(2):158-166. doi:10.4161/derm.20731
  102. Perez-Castrillon JL, Justo I, Sanz A, et al. Effect of angiotensin converting enzyme inhibitors on 1,25-(OH)2 D levels of hyper­tensive patients. Relationship with ACE polymorphisms. Horm Metab Res. 2006;38(12):812-816. doi:10.1055/s-2006-956500
  103. Semba RD, Bartali B, Zhou J, Blaum C, Ko CW, Fried LP. Low serum micronutrient concentrations predict frailty among older women living in the community. J Gerontol A Biol Sci Med Sci. 2006;61(6):594-599. doi:10.1093/gerona/61.6.594
  104. Vogt S, Decke S, de Las Heras Gala T, et al. Prospective associa­tion of vitamin D with frailty status and all-cause mortality in older adults: results from the KORA-age study. Prev Med. 2015;1 (73):40-46. doi:10.1016/j.ypmed.2015.01.010
  105. Perez-Castrillon JL, Vega G, Abad L, et al. Effects of atorvastatin on vitamin D levels in patients with acute ischemic heart disease. Am J Cardiol. 2007;99(7):903-905.
  106. Perez-Castrillon JL, Silva J, Justo I, et al. Effect of quinapril, quinapril-hydrochlorothiazide, and enalapril on the bone mass of hypertensive subjects: relationship with angiotensin converting enzyme polymorphisms. Am J Hypertens. 2003;16(6):453-459. doi:10.1016/S0895-7061(03)00845-8
  107. Forouhi NG, Ye Z, Rickard AP, et al. Circulating 25-hydroxyvi- tamin D concentration and the risk of type 2 diabetes: results from the European Prospective Investigation into Cancer (EPIC)- Norfolk cohort and updated meta-analysis of prospective studies. Diabetologia. 2012;55(8):2173-2182. doi:10.1007/s00125-012- 2544-y
  108. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibi­tion of HMG-CoA reductase. Science. 2001;292(5519):1160- 1164. doi:10.1126/science.1059344
  109. Dobs AS, Levine MA, Margolis S. Effects of pravastatin, a new HMGCoA reductase inhibitor, on vitamin D synthesis in man. Metabolism. 1991;40(5):524-528. doi:10.1016/0026-0495(91) 90235-O
  110. Montagnani M, Lore F, Di Cairano G, et al. Effects of pravastatin treatment on vitamin D metabolites. Clin Ther. 1994;16(5):824- 829.
  111. Vaughan CJ, Gotto AM. Update on statins: 2003. Circulation. 2004;110(7):886-892. doi:10.1161/01.CIR.0000139312.10076.BA
  112. Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet. 2002;41(5):343-370. doi:10.2165/00003088-200241050-00003
  113. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipidlowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565-581. doi:10.1016/j.clpt.2006.09.003
  114. Schwartz JB. Effects of vitamin D supplementation in atorvasta-tin-treated patients: a new drug interaction with an unexpected consequence. Clin Pharmacol Ther. 2009;85(2):198-203.doi:10.1038/clpt.2008.165
  115. Aloia JF, Li-Ng M, Pollack S. Statins and vitamin D. Am J Cardiol. 2007;100(8):1329. doi:10.1016/j.amjcard.2007.05.024
  116. Ismail F, Corder CN, Epstein S, Barbi G, Thomas S. Effects of pravastatin and cholestyramine on circulating levels of parathyr­oid hormone and vitamin D metabolites. Clin Ther. 1990;12:427-430.
  117. Ridker PM, Glynn RJ. Rosuvastatin, C-reactive protein, LDL cholesterol, and the JUPITER trial-Authors’ reply. Lancet. 2009;374:26-27. doi:10.1016/S0140-6736(09)61234-4
  118. Yavuz B, Ertugrul DT, Cil H, et al. Increased levels of 25 hydroxyvi- tamin D and 1, 25-dihydroxyvitamin D after rosuvastatin treatment: a novel pleiotropic effect of statins? Cardiovasc Drugs Ther. 2009;23 (4):295-299. doi:10.1007/s10557-009-6181-8
  119. Ertugrul DT, Yavuz B, Cil H, et al. STATIN-D Study: comparison of the influences of rosuvastatin and fluvastatin treatment on the levels of 25 hydroxyvitamin D. Cardiovasc Ther. 2011;29 (2):146-152. doi:10.1111/j.1755-5922.2010.00141.x
  120. Glossmann HH, Blumthaler M. Does rosuvastatin increase serum levels of 25-hydroxy-vitamin D? Dermato-endocrinology. 2012;4:2-7. doi:10.4161/derm.18681
  121. Holick MF. The statin D-lemma. Dermato-Endocrinology. 2012;4 (1):10-11. doi:10.4161/derm.20189
  122. Sahebkar A, Reiner Z, E Simental-Mendia L, et al. Impact of statin therapy on plasma vitamin D levels: a systematic review and meta-analysis. Curr Pharm Des. 2017;23(6):861-869. doi:10.2174/1381612822666161006150542
  123. Yavuz B, Ertugrul DT. Statins and vitamin D: a hot topic that will be discussed for a long time. Dermato-Endocrinology. 2012;4 (1):8-9. doi:10.4161/derm.20188
  124. Ahmed W, Khan N, Glueck CJ, et al. Low serum 25 (OH) vitamin D levels (<32 ng/mL) are associated with reversible myositis- myalgia in statin-treated patients. Transl Res. 2009;153:11-16.
  125. Plotnikoff GA, Quigley JM. Prevalence of severe hypovitamino-sis D in patients with persistent, nonspecific musculoskeletal pain. Mayo Clin Proc. 2003;78(12):1463-1470. doi:10.4065/78.12.1463
  126. Glueck CJ, Budhani SB, Masineni SS, et al. Vitamin D defi­ciency, myositis-myalgia, and reversible statin intolerance. Curr Med Res Opin. 2011;27(9):1683-1690. doi:10.1185/03007995.2011.598144
  127. Michalska-Kasiczak M, Sahebkar A, Mikhailidis DP, et al. Analysis of vitamin D levels in patients with and without statin- associated myalgia—a systematic review and meta-analysis of 7 studies with 2420 patients. Int J Cardiol. 2015;178:111-116. doi:10.1016/j.ijcard.2014.10.118
  128. Tonstad S, Knudtzon J, Sivertsen M, Refsum H, Ose L. Efficacy and safety of cholestyramine therapy in peripubertal and prepu­bertal children with familial hypercholesterolemia. J Pediatr. 1996;129(1):42-49. doi:10.1016/S0022-3476(96)70188-9
  129. Knodel LC, Talbert RL. Adverse effects of hypolipidaemic drugs. Med Toxicol. 1987;2:10-32. doi:10.1007/BF03259858
  130. Compston JE, Horton LW. Oral 25-hydroxyvitamin D3 in treat­ment of osteomalacia associated with ileal resection and choles­tyramine therapy. Gastroenterology. 1978;74:900-902.doi:10.1016/0016-5085(78)90150-6
  131. Compston JE, Thompson RP. Intestinal absorption of 25-hydro- xyvitamin D and osteomalacia in primary biliary cirrhosis. Lancet. 1977;1:721-724. doi:10.1016/S0140-6736(77)92167-5
  132. Heaton KW, Lever JV, Barnard RE. Osteomalacia associated with cholestyramine therapy for post-ileectomy diarrhea. Gastroenterology. 1972;62:642-646. doi:10.1016/S0016-5085(72)80051-9
  133. Hoogwerf BJ, Hibbard DM, Hunninghake DB. Effects of long­term cholestyramine administration on vitamin D and parathor­mone levels in middle-aged men with hypercholesterolaemia. J Lab Clin Med. 1992;119:407-11.
  134. Schwarz KB, Goldstein PD, Witztum JL, Schonfeld G. Fat-solu­ble vitamin concentrations in hypercholesterolemic children trea­ted with colestipol. Pediatrics. 1980;65(2):243-250. doi:10.1542/ peds.65.2.243
  135. Tsang RC, Roginsky MS, Mellies MJ, Glueck CJ. Plasma 25- hydroxy-vitamin D in familial hypercholesterolemic children receiving colestipol resin. Pediatr Res. 1978;12(10):980-982. doi:10.1203/00006450-197810000-00006
  136. Senova E, Steno B, Killinger Z, Baqi L, Payer J. Effect of long­term oral anticoagulant therapy on bone mineral density and bone turnover markers: a prospective 12 month study. Bratisl LekListy. 2011;112(2):71-76.
  137. Avgeri M, Papadopoulou A, Platokouki H, et al. Assessment of bone mineral density and markers of bone turnover in children under long­term oral anticoagulant therapy. J Pediatr Hematol Oncol. 2008;30 (8):592-597. doi:10.1097/MPH.0b013e31817541a8
  138. Sato Y, Honda Y, Kunoh H, Oizumi K. Long-term oral antic­oagulation reduces bone mass in patients with previous hemi­spheric infarction and nonrheumatic atrial fibrillation. Stroke. 1997;28(12):2390-2394. doi:10.1161/01.STR.28.12.2390
  139. Sato Y, Honda Y, Jun I. Long-term oral anticoagulation therapy and the risk of hip fracture in patients with previous hemispheric infarction and nonrheumatic atrial fibrillation. Cerebrovasc Dis. 2009;29(1):73. doi:10.1159/000256650
  140. Vestergaard P, Hermann P, Jensen JE, Eiken P, Mosekilde L. Effects of paracetamol, non-steroidal anti-inflammatory drugs, acetylsalicylic acid, and opioids on bone mineral density and risk of fracture: results of the Danish Osteoporosis Prevention Study (DOPS). Osteoporos Int. 2012;23(4):1255-1265. doi:10.1007/s00198-011-1692-0
  141. Cigolini M, Iagulli MP, Miconi V, Galiotto M, Lombardi S, Targher G. Serum 25-hydroxyvitamin D3 concentrations and prevalence of cardiovascular disease among type 2 diabetic patients. diabetes Care. 2006;29(3):722-724. doi:10.2337/dia- care.29.03.06.dc05-2148
  142. Verhoeven V, Vanpuyenbroeck K, Lopez-Hartmann M, et al. Walk on the sunny side of life-epidemiology of hypovitaminosis D and mental health in elderly nursing home residents. J Nutr Health Aging. 2012;16(4):417-420. doi:10.1007/s12603-011- 0361-5
  143. Milaneschi Y, Hoogendijk W, Lips P, et al. The association between low vitamin D and depressive disorders. Mol Psychiatry. 2014;19:444-451.
  144. Chonan O, Takahashi R, Yasui H, Watanuki M. Effect of L-lactic acid on calcium absorption in rats fed omeprazole. J Nutr Sci Vitaminol. 1998;44:473-481. doi:10.3177/jnsv.44.473
  145. O’ Connel MB, Madden DM, Murray AM, Heaney RP, Kerzner LJ. Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover trial. Am J Med. 2005;118:778-781. doi:10.1016/j.amjmed.2005.02.007
  146. Teramura-Gronblad M, Hosia-Randell H, Muurinen S, Pitkala K. Use of proton-pump inhibitors and their associated risks among frail elderly nursing home residents. Scand J Prim Health Care. 2010;28:154-159. doi:10.3109/02813432.2010.493315
  147. Bengoa JM, Bolt MJ, Rosenberg IH. Hepatic vitamin D 25- hydroxylase inhibition by cimetidine and isoniazid. J Lab Clin Med. 1984;104(4):546-552.
  148. Wyatt CL, Jensen LS, Rowland GN. Effect of cimetidine on eggshell quality and plasma 25-hydroxycholecalciferol in laying hens. Poult Sci. 1990;69(11):1892-1899. doi:10.3382/ps.0691892
  149. Odes HS, Fraser GM, Krugliak P, Lamprecht SA, Shany S. Effect of cimetidine on hepatic vitamin D metabolism in humans. Digestion. 1990;46(2):61-64. doi:10.1159/000200333
  150. Richards DA. Comparative pharmacodynamics and pharmacoki­netics of cimetidine and ranitidine. J Clin Gastroenterol. 1983;5 (suppl 1):81-90. doi:10.1097/00004836-198312001-00008
  151. Rickers H, Deding A, Christiansen C, Rodbro P, Naestoft J. Corticosteroid- induced osteopenia and vitamin D metabolism: effect of vitamin D2, calcium phosphate and sodium fluoride administration. Clin Endocrinol. 1982;16(4):409-415. doi:10.im/j.1365-2265.1982.tb00734.x
  152. Zerwekh JE, Emkey RD, Harris ED. Low-dose prednisone ther­apy in rheumatoid arthritis: effect on vitamin D metabolism. Arthritis Rheum. 1984;27(9):1050-1052. doi:10.1002/art.1780270913
  153. Hahn TJ, Halstead LR, Baran DT. Effects of short term gluco­corticoid administration on intestinal calcium absorption and cir­culating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab. 1981;52(1):111-115. doi:10.1210/jcem-52-1- 111
  154. Prummel MF, Wiersinga WM, Lips P, Sanders GT, Sauerwein HP. The course of biochemical parameters of bone turnover during treatment with corticosteroids. J Clin Endocrinol Metab. 1991;72 :382-386. doi:10.1210/jcem-72-2-382
  155. Lems WF, Jacobs JW, Van Rijn HJ, Bijlsma JW. Changes in calcium and bone metabolism during treatment with low dose prednisone in young, healthy, male volunteers. Clin Rheumatol. 1995;14(4):420-424. doi:10.1007/BF02207675
  156. Halton JM, Atkinson SA, Fraher L, et al. Altered mineral meta­bolism and bone mass in children during treatment for acute lymphoblastic leukemia. J bone Miner Res. 1996;11(11):1774- 1783. doi:10.1002/jbmr.5650111122
  157. Hahn TJ, Halstead LR, Haddad JG. Serum 25-hydroxyvitamin D concentrations in patients receiving chronic corticosteroid ther­apy. J Lab Clin Med. 1977;90(2):399-404.
  158. Klein RG, Arnaud SB, Gallagher JC, Deluca HF, Riggs BL. Intestinal calcium absorption in exogenous hypercortisonism: role of 25-hydroxyvitamin D and corticosteroid dose. J Clin Invest. 1977;60(1):253-259. doi:10.1172/JCI108762
  159. Lund B, Storm TL, Melsen F, et al. bone mineral loss, bone histomorphometry and vitamin D metabolism in patients with rheumatoid arthritis on longterm glucocorticoid treatment. Clin Rheumatol. 1985;4(2):143-149. doi:10.1007/BF02032284
  160. Bikle DD, Halloran B, Fong L, Steinbach L, Shellito J. Elevated 1,25-dihydroxyvitamin D levels in patients with chronic obstruc­tive pulmonary disease treated with prednisone. J Clin Endocrinol Metab. 1993;76(2):456-461.
  161. Wetzsteon RJ, Shults J, Zemel BS, et al. Divergent effects of glucocorticoids on cortical and trabecular compartment BMD in childhood nephrotic syndrome. J bone Miner Res. 2009;24:503-513. doi:10.1359/jbmr.081101
  162. Wolthers OD, Riis BJ, Pedersen S. bone turnover in asthmatic children treated with oral prednisolone or inhaled budesonide. Pediatr Pulmonol. 1993;16(6):341-346. doi:10.1002/ppul.1950160604
  163. Bijlsma JW, Duursma SA, Huber-Bruning O. bone metabolism during methylprednisolone pulse therapy in rheumatoid arthritis. Ann Rheum Dis. 1986;45(9):757-760. doi:10.1136/ard.45.9.757
  164. Slovik DM, Neer RM, Ohman JL, et al. Parathyroid hormone and 25-hydroxyvitamin D levels in glucocorticoid-treated patients. Clin Endocrinol. 1980;12(3):243-248. doi:10.1111/j.1365-2265.1980.tb02706.x
  165. Als OS, Riis B, Christiansen C. Serum concentration of vitamin D metabolites in rheumatoid arthritis. Clin Rheumatol. 1987;6 (2):238-243. doi:10.1007/BF02201030
  166. von Scheven E, Gordon CM, Wypij D, Wertz M, Gallagher KT, Bachrach L. Variable deficits of bone mineral despite chronic glucocorticoid therapy in pediatric patients with inflammatory diseases: a Glaser Pediatric Research Network study. J Pediatr Endocrinol Metab. 2006;19(6):821-830. doi:10.1515/JPEM.2006.19.6.821
  167. Sentongo TA, Semaeo EJ, Stettler N, Piccoli DA, Stallings VA, Zemel BS. Vitamin D status in children, adolescents, and young adults with Crohn disease. Am J Clin Nutr. 2002;76(5):1077- 1081. doi:10.1093/ajcn/76.5.1077
  168. Cohran VC, Griffiths M, Heubi JE. bone mineral density in children exposed to chronic glucocorticoid therapy. Clin Pediatr. 2008;47(5):469-75. doi:10.1177/0009922807311732
  169. Santiago RA, Silva CA, Caparbo VF, Sallum AM, Pereira RM. bone mineral apparent density in juvenile dermatomyositis: the role of lean body mass and glucocorticoid use. Scand J Rheumatol. 2008;37(1):40-7. doi:10.1080/03009740701687226
  170. Jennings BH, Andersson KE, Johansson SA. The assessment of the systemic effects of inhaled glucocorticosteroids. The effects of inhaled budesonide vs oral prednisolone on calcium metabo­lism. Eur J Clin Pharmacol. 1991;41:11-16. doi:10.1007/ BF00280099
  171. Janssens W, Bouillon R, Claes B, et al. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax. 2010;65:215-220. doi:10.1136/ thx.2009.120659
  172. Kunisaki KM, Rector TS. Vitamin D and responses to inhaled fluticasone in severe chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2011;6:29-34. doi:10.2147/COPD. S15358
  173. Richy F, Bousquet J, Ehrlich GE, et al. Inhaled corticosteroids effects on bone in asthmatic and COPD patients: a quantitative systematic review. Osteoporos Int. 2003 ;14(3):179-190.doi:10.1007/s00198-003-1398-z
  174. Jones A, Fay JK, Burr ML, Stone M, Hood K, Roberts G. Inhaled corticosteroid effects on bone metabolism in asthma and mild chronic obstructive pulmonary disease. Cochrane Database SystRev.
  175. Halpern MT, Schmier JK, Van Kerkhove MD, Watkins M, Kalberg CJ. Impact of long-term inhaled corticosteroid therapy on bone mineral density: results of a meta-analysis. Ann Allergy Asthma Immunol. 2004;92(2):201-207. doi:10.1016/S1081-1206 (10)61548-7
  176. Loke YK, Gilbert D, Thavarajah M, Blanco P, Wilson AM. bone mineral density and fracture risk with long-term use of inhaled corticosteroids in patients with asthma: systematic review and meta-analysis. BMJ Open. 2015;5(11):e008554. doi:10.1136/ bmjopen-2015-008554
  177. Vanfleteren LE, Spruit MA, Groenen M, et al. Clusters of comor­bidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary dis­ease. Am J Respir Crit Care Med. 2013;187(7):728-735. doi:10.1164/rccm.201209-1665OC
  178. Weatherall M, James K, Clay J, et al. Dose-response relationship for risk of non-vertebral fracture with inhaled corticosteroids. Clin Exp Allerg. 2008;38(9):1451-1458. doi:10.1111/j.1365- 2222.2008.03029.x
  179. Loke YK, Cavallazzi R, Singh S. Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax. 2011;66:699-708. doi:10.1136/thx.2011.160028
  180. Chan V, Cave AJ, Banh HL. Self-reported osteoporosis preven­tion in inhaled corticosteroid users in community pharmacy set­ting. SAGE Open Med. 2015;22(3):2050312115586912.
  181. American College of Rheumatology Task Force on Osteoporosis Guidelines. Recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheum. 1996;39:1791-1801. doi:10.1002/art.1780391104
  182. de Vries F, Pouwels S, Bracke M, et al. Use of beta-2 agonists and risk of hip/femur fracture: a population-based case-control study. Pharmacoepidemiol Drug Saf. 2007;16(6):612-619. doi:10.1002/ pds.1318
  183. Tattersfield AE, Town GI, Johnell O, et al. bone mineral density in subjects with mild asthma randomised to treatment with inhaled corticosteroids or non-corticosteroid treatment for two years. Thorax. 2001;56(4):272-278. doi:10.n36/thorax.56.4.272
  184. Williams SE, Wardman AG, Taylor GA, et al. Long term study of the effect of rifampicin and isoniazid on vitamin D metabolism. Tubercle. 1985;66:49-54. doi:10.1016/0041-3879(85)90053-4
  185. Kovacs CS, Jones G, Yendt ER. Primary hyperparathyroidism masked by antituberculous therapy-induced vitamin D deficiency. Clin Endocrinol. 1994;41:831-838. doi:10.1m/j.1365-2265.1994 tb02801.x
  186. Perry W, Erooga MA, Brown J, Stamp TC. Calcium metabolism during rifampicin and isoniazid therapy for tuberculosis. J R Soc Med. 1982;75:533-536.
  187. Wanga Z. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol. 2013;136:54-58. doi:10.1016/j.jsbmb.2012.09.012
  188. Brodie MJ, Boobis AR, Dollery CT, et al. Rifampicin and vitamin D metabolism. Clin Pharmacol Ther. 1980;27(6):810-814. doi:10.1038/clpt.1980.115
  189. Brodie MJ, Boobis AR, Hillyard CJ, Abeyasekera G, MacIntyre I, Park BK. Effect of isoniazid on vitamin D metabolism and hepatic monooxygenase activity. Clin Pharmacol Ther. 1981 ;30 (3):363-367. doi:10.1038/clpt.1981.173
  190. Brodie MJ, Boobis AR, Hillyard CJ, et al. Effect of rifampicin and isoniazid on vitamin D metabolism. Clin Pharmacol Ther. 1982;32(4):525-530. doi:10.1038/clpt.1982.197
  191. Davies PD, Brown RC, Church HA, Woodhead JS. The effect of antituberculosis chemotherapy on vitamin D and calcium metabolism. Tubercle. 1987;68(4):261-266. doi:10.1016/0041-3879(87)90066-3
  192. Martinez ME, Gonzalez J, Sanchez-Cabezudo MJ, Pena JM, Vazquez JJ. Remission of hypercalciuria in patients with tubercu­losis after treatment. Calcif Tissue Int. 1996;59(1):17-20. doi:10.1007/s002239900078
  193. Shah SC, Sharma RK, Hemangini H, Chitle AR. Rifampicin induced osteomalacia. Tubercle. 1981;62:207-209. doi:10.1016/ 0041-3879(81)90008-8
  194. Reitsma JB, Castro Cabezas M, de Bruin TW, Erkelens DW. Relationship between improved postprandial lipemia and low- density lipoprotein metabolism during treatment with tetrahydro- lipstatin, a pancreatic lipase inhibitor. Metab Clin Exp. 1994;43:293-298. doi:10.1016/0026-0495(94)90095-7
  195. Guerciolini R. Mode of action of orlistat. Int J Obes Relat Metab Disord. 1997;21(suppl 3):S12.
  196. Gotfredsen A, Westergren Hendel H, Andersen T. Influence of orlistat on bone turnover and body composition. Int J Obes Relat Metab Disord. 2001;25(8):1154-1160. doi:10.1038/sj.ijo.0801639
  197. James WP, Avenell A, Broom J, Whitehead J. A one-year trial to assess the value of orlistat in the management of obesity. Int J Obes Relat Metab Disord. 1997;21(suppl 3):S24-S30.
  198. McDuffie JR, Calis KA, Booth SL, Uwaifo GI, Yanovski JA. Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy. 2002;22(7):814-822. doi:10.1592/phco.22.11.814.33627
  199. Ruiz-Irastorza G, Egurbide MV, Olivares N, Martinez-Berriotxoa A, Aguirre C. Vitamin D deficiency in systemic lupus erythematosus: prevalence, predictors and clinical consequences. Rheumatology. 2008;47:920-923. doi:10.1093/rheumatology/ken121
  200. Flexner C. Antiretroviral agents and treatment of HIV infection. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman & Gilman’s the Pharmacological Basis of Therapeutics. 11th ed. New York: McGraw-Hill; 2006.
  201. Cozzolino M, Vidal M, Arcidiacono MV, Tebas P, Yarasheski KE, Dusso AS. HIV-protease inhibitors impair vitamin D bioactiva­tion to 1,25-dihydroxyvitamin D. AIDS. 2003;17(4):513-520. doi:10.1097/00002030-200303070-00006
  202. Ramayo E, Gonzalez-Moreno MP, Macias J, et al. Relationship between osteopenia, free testosterone, and vitamin D metabolite levels in HIVinfected patients with and without highly active antiretroviral therapy. AIDS Res Hum Retroviruses. 2005;21 (11):915-921. doi:10.1089/aid.2005.21.915
  203. Curtis JR, Smith B, Weaver M, et al. Ethnic variations in the prevalence of metabolic bone disease among HIV-positive patients with lipodystrophy. AIDS Res Hum Retroviruses. 2006;22(2):125-131. doi:10.1089/aid.2006.22.125
  204. Garcia Aparicio AM, Munoz Fernandez S, Gonzalez J, et al. Abnormalities in the bone mineral metabolism in HIV-infected patients. Clin Rheumatol. 2006;25(4):537-539. doi:10.1007/ s10067-005-0028-x
  205. Havers FP, Detrick B, Cardoso SW, et al. Change in Vitamin D levels occurs early after antiretroviral therapy initiation and depends on treatment regimen in resource-limited settings. PLoS One. 2014;9(4):e95164. doi:10.1371/journal.pone.0095164
  206. Tannirandorn P, Epstein S. Drug-induced bone loss. Osteoporos Int. 2000;11:637-659. doi:10.1007/s001980070062
  207. Zimran A, Shilo S, Fisher D, Bab I. Histomorphometric evalua­tion of reversible heparin-induced osteoporosis in pregnancy. Arch Intern Med. 1986;146:386-388. doi:10.1001/archinte.1986.00360140226033
  208. Dahlman TC. Osteoporotic fractures and the recurrence of throm­boembolism during pregnancy and the puerperium in 184 women undergoing thromboprophylaxis with heparin. Am J Obstet Gynecol. 1993;168:1265-1270. doi:10.1016/0002-9378(93)90378-V
  209. Barbour LA, Kick SD, Steiner JF, et al. A prospective study of heparin-induced osteoporosis in pregnancy using bone densito­metry. Am J Obstet Gynecol. 1994;170:862-869. doi:10.1016/ S0002-9378(94)70299-3
  210. Martineau P, Tawil N. Low-molecular-weight heparins in the treatment of deep-vein thrombosis. Ann Pharmacother. 1998;32:588-98,601. doi:10.1345/aph.16450
  211. Aarskog D, Aksnes L, Lehmann V. Low 1,25-dihydroxyvitamin D in heparin-induced osteopenia (letter). Lancet. 1980;2:650-651. doi:10.1016/S0140-6736(80)90325-6
  212. Monreal M, Olive A, Lafoz E, Del Rio L. Heparins, coumarin and bone density (letter). Lancet. 1991;338:706. doi:10.1016/0140- 6736(91)91292-3
  213. Pettila V, Leinonen P, Markkola A, et al. Postpartum bone mineral density in women treated for thromboprophylaxis with unfractio­nated heparin or LMW heparin. Thromb Haemost. 2002;87:182- 186. doi:10.1055/s-0037-1612970
  214. Sivakumaran M, Ghosh K, Zaidi Y, Hutchinson RM. Osteoporosis and vertebral collapse following low-dose, low molecular weight heparin therapy in a young patient. Clin Lab Haematol. 1996;18:55-57. doi:10.1111/j.1365-2257.1996.tb00741.x
  215. Meijerman I, Beijnen JH, Schellens JH. Herb-drug interactions in oncology: focus on mechanisms of induction. Oncologist. 2006;11(7):742-752. doi:10.1634/theoncologist.11-7-742
  216. Santini D, Galluzzo S, Vincenzi B, et al. A longitudinal evalua­tion of vitamin D plasma levels during anthracycline- and doc- etaxel-based adjuvant chemotherapy in early-stage breast cancer patients. Ann Oncol. 2010;21(1):185-186. doi:10.1093/annonc/ mdp497
  217. Freedman DM, Looker AC, Chang SC, et al. Prospective study of serum vitamin D and cancer mortality in the United States. J Natl Cancer Inst. 2007;99:1594-1602. doi:10.1093/jnci/djm204
  218. Kailajarvi ME, Salminen EK, Paija OM, et al. Serum bone markers in breast cancer patients during 5-fluorouracil, epirubicin and cyclopho­sphamide (FEC) therapy. Anticancer Res. 2004;24:1271-1274.
  219. Crew KD, Shane E, Cremers S, et al. High prevalence of vitamin D deficiency despite supplementation in premenopausal women with breast cancer undergoing adjuvant chemotherapy. J Clin Oncol. 2009;27:2151-2156. doi:10.1200/JC0.2008.19.6162
  220. Jacot W, Pouderoux S, Thezenas S. Increased prevalence of vitamin D insufficiency in patients with breast cancer after neoad­juvant chemotherapy. Breast Cancer Res Treat. 2012;134:709- 717. doi:10.1007/s10549-012-2084-7
  221. Goodwin PJ, Ennis M, Pritchard KI, et al. Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. J Clin Oncol. 2009;27:3757-3763. doi:10.1200/JCO.2008.20.0725
  222. Gao Y, Shimizu M, Yamada S, Ozaki Y, Aso T. The effects of chemotherapy including cisplatin on vitamin D metabolism. Endocr J. 1993;40(6):737-742. doi:10.1507/endocrj.40.737
  223. Fakih MG, Trump DL, Johnson CS, Tian L, Muindi J, Sunga AY. Chemotherapy is linked to severe vitamin D deficiency in patients with colorectal cancer. Int J Colorectal Dis. 2009;24(2):219-224. doi:10.1007/s00384-008-0593-y
  224. Matsuoka LY, Ide L, Wortsman J, et al. Suncreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165-1168. doi:10.1210/jcem-64-6-1165
  225. Matsuoka LY, Wortsman J, Hanifan N, Holick MF. Chronic suncreen use decreases circulating concentrations of 25-hydroxy- vitamin D. Arch Dermatol. 1988;124:1802-1804. doi:10.1001/ archderm.1988.01670120018003
  226. Prystowsky JH. Photoprotection and the vitamin D status of the elderly. Arch Dermatol. 1988;124:1844-1848. doi:10.1001/archderm.1988.01670120060011
  227. Holick MF. Sunlight “D”ilemma: risk of skin cancer or bone disease and muscle weakness. Lancet. 2001;357:4-6.doi:10.1016/S0140-6736(00)03560-1
  228. Reichrath J. Protecting against adverse effects of sun protection. J Am Acad Dermatol. 2003;49:1204-1206. doi:10.1016/S0190- 9622(03)02142-X
  229. Huang H, Wang H, Sinz M, et al. Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene. 2007;26(2):258-268. doi:10.1038/sj.onc.1209788
  230. Marechal JD, Yu J, Brown S, et al. In silico and in vitro screening for inhibition of cytochrome P450 CYP3A4 by comedications commonly used by patients with cancer. Drug Metab Dispos. 2006;34(4):534-538. doi:10.1124/dmd.105.007625
  231. Loose DS, Kan PB, Hirst MA, Marcus RA, Feldman D. Ketoconazole blocks adrenal steroidogenesis by inhibiting cyto­chrome P450-dependent enzymes. J Clin In-vest. 1983;71 (5):1495-1499. doi:10.1172/JCI110903
  232. Kassi EN, Stavropoulos S, Kokkoris P, et al. Smoking is a significant determinant of low serum vitamin D in young and middle-aged healthy males. Hormones. 2015;14(2):245-250.
  233. Jaaskelainen T, Knekt P, Marniemi J, et al. Vitamin D status is associated with sociodemographic factors, lifestyle and metabolic health. Eur J Nutr. 2013;52:513-525. doi:10.1007/s00394-012- 0354-0
  234. Thuesen B, Husemoen L, Fenger M, et al. Determinants of vitamin D status in a general population of Danish adults. bone. 2012;50:605-610. doi:10.1016/j.bone.2011.12.016
  235. Scragg R, Holdaway I, Jackson R, Lim T. Plasma 25-hydroxyvi- tamin D3 and its relation to physical activity and other heart disease risk factors in the general population. Ann Epidemiol. 1992;2:697-703. doi:10.1016/1047-2797(92)90014-H
  236. Jungert A, Neuhauser-Berthold M. Dietary vitamin D intake is not associated with 25-hydroxyvitamin D3 or parathyroid hor­mone in elderly subjects, whereas the calcium-to-phosphate ratio affects parathyroid hormone. Nutr Res. 2013;33:661-667. doi:10.1016/j.nutres.2013.05.011
  237. Banihosseini SZ, Baheiraei A, Shirzad N, Heshmat R, Mohsenifar A. The effect of cigarette smoke exposure on vita­min D level and biochemical parameters of mothers and neo­nates. J diabetes Metab Disord. 2013;12(1):1-7. doi:10.1186/ 2251-6581-12-19
  238. Jorde R, Sneve M, Emaus N, Figenschau Y, Grimnes G. Cross­sectional and longitudinal relation between serum 25-hydroxyvi­tamin D and body mass index: the Troms0 study. Eur J Nutr. 2010;49(7):401-407. doi:10.1007/s00394-010-0098-7
  239. Liu N, Sun J, Wang X, Zhang T, Zhao M, Li H. Low vitamin D status is associated with coronavirus disease 2019 outcomes: a systematic review and meta-analysis. Int J Infect Dis. 2021;58- 64. doi:10.1016/j.ijid.2020.12.077
  240. Kazemi A, Mohammadi V, Keshtkar S, et al. Association of vitamin D status with SARS-CoV-2 infection or COVID-19 severity: a systematic review and meta-analysis. Adv Nutr. 2021. doi:10.1093/advances/nmab012
  241. Teshome A, Adane A, Girma B, Mekonnen ZA. The impact of vitamin D level on COVID-19 infection: systematic review and meta-analysis. Front Public Health. 2021;9:624559. doi:10.3389/ fpubh.2021.624559
  242. Pereira M, Dantas Damascena A, Galvao Azevedo LM, de Almeida Oliveira T, da Mota Santana J. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020;3:1-9.
  243. Ghasemian R, Shamshirian A, Heydari K, et al. The role of vitamin D in the age of COVID-19: a systematic review and meta-analysis. MedRxiv. 2020:1-20. doi:10.1101/2020.06.05.20123554.
  244. Nikniaz L, Akbarzadeh MA, Hosseinifard H, Hosseini MS. The impact of vitamin D supplementation on mortality rate and clin­ical outcomes of COVID-19 patients: a systematic review and meta-analysis. medRxiv. 2021.
  245. Yisak H, Ewunetei A, Kefale B, et al. Effects of vitamin D on COVID- 19 infection and prognosis: a systematic review. Risk Manag Healthc Policy. 2021;14:31-38. doi:10.2147/RMHPS291584
  246. Pinzon RT, Pradana AW. Vitamin D deficiency among patients with COVID-19: case series and recent literature review. Trop Med Health. 2020;48:102. doi:10.1186/s41182-020-00277-w
  247. Garg S, Kim L, Whitaker M, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 — COVID-NET, 14 states, March 1 - 30, 2020. MMR. 2020;69(15):458-464.
  248. Wakeman MP. A review of the role micronutrient status in the elderly plays in their immune response to viral respiratory infec­tions and the potential compromising effects medications might cause. J Adv Med Med Res. 2020;13:59-85. doi:10.9734/jammr/ 2020/v32i830468
  249. Roberts C, Steer T, Maplethorpe N, et al. National diet and nutrition survey results from years 7 and 8 (combined) of the rolling programme (2014/2015 to 2015/2016). PHE publications. Available from: https://www.gov.uk/government/statistics/ndnsre sults-from-years-7-and-8-combined. Accessed July 16, 2020.
  250. Public Health England. Press release: PHE publishes new advice on vitamin D. 2016. Available from: https://www.gov.uk/govern ment/news/phe-publishes-new-advice-on-vitamin-d. Accessed July 16, 2021.
  251. Scientific Advisory Committee on Nutrition. Vitamin D and health. 2016. Available from: https://www.gov.uk/government/ publications/sacn-vitamin-d-and-health-report. Accessed July 16, 2021.
  252. Hin H, Tomson J, Newman C, et al. Optimum dose of vitamin D for disease prevention in older people: BEST-D trial of vitamin D in primary care. Osteoporos Int. 2017;28(3):841-851. doi:10.1007/s00198-016-3833-y
  253. Griffin G, Hewison M, Hopkin J, et al. Preventing vitamin D deficiency during the COVID-19 pandemic: UK definitions of vitamin D sufficiency and recommended supplement dose are set too low. Clin Med. 2021;21(1):e48. doi:10.7861/clinmed.2020-0858
  254. Carlberg C, Haq A. The concept of the personal vitamin D response index. J Steroid Biochem Mol Biol. 2018;175:12-17. doi:10.1016/j.jsbmb.2016.12.011
  255. Gao L, Maidment I, Matthews FE, Robinson L, Brayne C. Medical Research Council Cognitive Function and Ageing Study. Medication usage change in older people (65+) in England over 20 years: findings from CFAS I and CFAS II. Age Ageing. 2018;47(2):220-225. doi:10.1093/ageing/afx158
  256. Charlesworth CJ, Smit E, Lee DSH, et al. Polypharmacy among adults aged 65 years and older in the United States: 1988-2010. J Gerontol A Biol Sci Med Sci. 2015;70:989-995. doi:10.1093/gerona/glv013
  257. Guthrie B, Makubate B, Hernandez-santiago V, et al. The rising tide of polypharmacy and drug-drug interactions: population data­base analysis 1995-2010. BMC Med. 2015;13:74. doi:10.1186/ s12916-015-0322-7
  258. Qato DM, Alexander GC, Conti RM, Johnson M, Schumm P, Lindau ST. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. J Am Med Assoc. 2008;300:2867-2878.
  259. Franchi C, Tettamanti M, Pasina L, et al. Changes in drug pre­scribing to Italian community-dwelling elderly people: the EPIFARM—Elderly Project 2000-2010. Eur J Clin Pharmacol. 2014;70:437-43. doi:10.1007/s00228-013-1621-6

VitaminDwiki - Interactions with Vitamin D contains

Interactions with Vitamin D has 123 items

Various drugs decrease Vitamin D
Drug interactions with Vitamin D - many studies - Feb 2024
Antidepressants reduce cellular Vitamin D, increasing fractures, CVD, etc. - Oct 2022
Medications that appear to lower Vitamin D – Aug 2021
24 drugs that typically reduce Vitamin D levels – Review Aug 2021
Proton pump inhibitors decrease Vitamin D and Magnesium – Dec 2018
Statins and Vitamin D - many studies
Glyphosate decreases Vitamin D getting to cells in many ways
Antibiotics and Vitamin D are associated with many of the same diseases
More colas lower vitamin D by 3 ng– July 2014
A few Drugs increase Vitamin D
Contraceptives,   Probiotics
Vitamin D can decrease/increase impact of drugs
be careful of Chemotheraphy and Vitamin D
Vitamin D generally improves the efficacy of drugs while reducing their adverse effects – Jan 2020
Some Drugs decrease Vitiamin D co-factors or limit vitamin D getting to cells
Drugs which create deficiencies in Vitamin D, Vitamin K, Magnesium, Zinc, Iron, etc. – Sept 2017
Drugs Deplete Magnesium
Interaction of drugs with Vitamin D cofactors
Non-drugs also decrease vitamin D levels in blood and cells
Plastics, BPA, PCB and Vitamin D deficiency
Air pollution, toxins, heavy metals and smoking each result in lower Vitamin D levels – Nov 2018
Air Pollution reduces Vitamin D production - many studies
Pesticides increase risk of Cancers, Alz, ALS, Asthma, ADHD, etc. (all related to low vitamin D) – Oct 2016
Smoking   Coffee
Cooked dried beans or peas

4276 visitors, last modified 22 May, 2024,
Printer Friendly Follow this page for updates